avi

A AurarecH Automation m

M1450 Serial Cam Module

(ASY-M1250-SER2, ASY-M1250-SER2L, ASY-M1250-SER4)
Instruction & Operation Manual

Sales and Marketing v

343 St. Paul Blvd.
Carol Stream, IL 60188
Tel: (630)668-3900

FAX: (630)668-4676

Factory Customer Service/Order Entry v
4140 Utica Ridge Rd.

Bettendorf, IA 52722

Tel: (319)359-7501

(800)711-5109

FAX: (319)359-9094

: Application Hotline
? 1 (800) TEC-ENGR (832-3647)

r Vist our web site at: www.avg.net

’

1

| MAN-M1450-CAM
: REV 01 12/07/99
:
:
!
l
b
|

Table of Contents

INtTOQUCHION & o o o e o v e e e e e e e e 1
SPECIfications e 1
InStallation . .« v o v v e oo e e e e e 3
1771-KG Installation . . .« . ¢ o vt v i oo 3
M1450 Installation« v v oo i e S
PrOGIAMMUNG . . <« o v e v ommen s a s mmes st s o m e 5
M1450 Configuration ce e 5
Serial Link Programmingo e e 6
EITOTS & o o oo o e v oo emo e o amaa o amm s mee e 12
TEMING . . o v e cen e v 12
Example Programs - .« cvev e neo e 12
Appendix 1 14
ProgramLogic oot 17
COMMUNICALON ZONE .+ ¢ o o v s o o oo s s oo s o s s s oo 17
CompletionLogic« vcvvie e 18
APPENdiX2 20
StartLogic . .. oot h e 21
COMMUNICAUON ZOMNE . . « o« c o v v o s oot a o s oo 22
CompletionLogicccvvvvercnanaeeen 23
ProgramData oo 23
Appendix3 25
StartLogic 26
COmMMUNICAUON ZOME . « « = v ¢ o o v oo s o oo s oo s e o oo 27
CompletionLogic« oo v vvee i 28

M 1450 Serial Module ApplicationNoteccovve e 30

‘. Introduction

#

The M 1250 Serial Cam Module gives the user remote control of the M1450 PLS.
The M1450-300 is currently the only Mini-PLS model which supports this serial
interface option.

An M1450 PLS with a Serial Cam Module installed can be connected to an
Allen-Bradley PC (via a 1771-KG module) or to an ordinary computer capable
of simulating the Allen-Bradley protocol. The user can get status, position, tach
and channel setpoint information from the M1250. In addition, the user can
program new channel setpoints, new tach motion limits and new machine offsets
while in motion.

The M1250 Serial Cam module is designed to work with the Allen-Bradley
PLC-2 Family/RS-232C Interface Module (Catalog 1771-KG). The unit may
also be connected to any other controller or computer that can simulate the
supported protocol using an RS-232 or an RS-422 interface. The M1250 can
operate in a stand-alone, point-to-point or multi-drop (RS-422 only) link with
a PC or PLC. By interfacing the M1450 to an Allen-Bradley 1771-KF module,
it can communicate over the Data Highway Network. See figure 1 for example
configurations.

The M1250 serial cam module supports peer-to-peer communications through
a full-duplex unpolled protocol. The implemented serial commands are a
subset of the Allen-Bradley command set.

1.1. Specifications

Electrical interface:

ASY-MI1250-SER2 ittt i, RS-232C
ASY-MI250-SER2L. i Long line RS-232
ASY-MI1250-SER4 i e e "RS-422
Communications protocol Full duplex (peer-to-peer)
Communicationrates 110, 300, 600, 1200, 2400,4800, 9600, 19200 bits/s
Station NUMDET FTANZE . . .« v v v v v e et e e e e oo eo e 0-254

Errordetection . . . v v v v i i e e et e e e e e e e e e e CRC

M1450-300 Mini-PLS

A-B1771-KG A-B1771-KA

PLC-2 System\

/

RS-232 Interface To A-B Data Highway
a) Stand-alone Configuration
PLC-2 System
M1450-300 Mini-PLS A-B 1771-KF
RS-232 Interface
A-B Data Highway A-B 1771-KA
PLC-2 System
b) Data HighwayConfiguration]
- -4
M1450-300 Mini-PLS A-B 1771-KF A-BPLC
RS-422to0 .
RS-232 A-B Data Highway | \A B 1773-KA
Converter ABPLC3
M1450-300 Mini-PLS
RS-232 Link
RS-422 Link
] \A-B 1771-KA

c) Muttiple PLS Data HighwayConfiguration
Figure 1, Interface Configurations

. Installation

2.1. -1771-KG Installation

Equipment needed:
o Allen-Bradley 1771-KG (Series B) RS-232-C Interface Module.

e PC Processor to 1771-KG Interface cable, AB 1771-CN (1.5 feet),
1771-CO (3.5 feet) or 1771-CR (10.0 feet).

e 1771-KG to M1250 Interface cable (see figure 3).

o Autotech M1450-300 Mini PLS (SAC-M1250-S10) and Serial Cam
module.

Before installing the 1771-KG in the Allen-Bradley I/O chassis, the dip switches
on the module must be set up properly. There are three sets of dip switches,
SW1 sets up the communications rate, SW2 sets up the options and SW3, SW4
and SWS set the station number (the switches are located on the back of the
module, along the top edge, beneath a cover plate). Make a note of the switch
settings, you will need to know them when you begin programming. See figure
2 for how to set the switches.

The communication rate setting will depend on a number of different factors.
If the M1450 is being connected via a modem link, the communication rate must
be equal to that of the modem. If a direct connection is used between the M1450
and another communication module, use the following chart to determine the
communication rate. Note that slower communication rates will be more
immune to electrical noise.

Separation Maximum baud rate
(feet)
1000 19200*
2000 9600*
3000 9600*
4000 4800
5000 4800
6000 4800
7000 2400
* RS-422 or long-ine RS-232 only

Table 1, Baud rate vs. Distance

The option switches on the 1771-KG module should be set for full-duplex
protocol (peer-to-peer) protocol with CRC error checking and unprotected
writes enabled (set SW2-1 off, SW2-2 on, SW2-3 off, SW2-4 on; if only one
1771-KG is being used, SW2-5 on). '

Use switches SW3 - SW5 to select the station number (select a number between
10 to 77 or 110 to 376).

SW1

1 2 3 SW 1 SW2 SW3 Baud rate
Oft Off Off 110
On Off Off 300
.ON off On off 600
On On off 1200
Off Off On 2400
On Off On 4800
OFF Off On On 9600
On On On 19200
A) Communications Rate Programming
SW 3 (s digit) SW4 . SW 5 (Is digit)
1 2 1 2 3 1 2 3
ON ON ON
OFF OFF OFF
1 2 Value 1 2 3 Value| 1 2 3 Value
Oft Off 0 Oft Oft Off 0 Off Off Oft 0
Off On 1 Oft Off On 1 oft Off On 1
On Ooft 2 Off On oft 2 off On Oft 2
On On 3 Off On On 3 Off On On 3
On Off oft 4 On Off Oft 4
On Off On 5 On Off On 5
On On Off 6 On On Off 6
On On On 7 On On On 7
SW2 B) Station Number Programming
4
ON 1 2 4 5 KG #
Off On Off On 1
OFF Off On On On 2
C) Protocol Selection

Figure 2, 1771-KG Configuration

The AB 1771-KG Module can be plugged into any slot (except the left-most) of
a Bulletin 1771 I/O Chassis (keying plugs are provided with the 1771-KG

module).

2.2. M1450 Installation

The M1450 Serial Cam Module may be installed in slot 4 or slot 5 of the M1250
chassis. The cable from the 1771-KG’s RS-232-C port is wired to the back of
the serial cam module. See figure 3 for cable wiring.

qpap
Xy

OS

- | C

O « TWISTED PAR

S&bsbss80

§gg§33§€

%
L.

3. Programming

3.1. M1450 Configuration

After the module is installed, the station number and the communication rate
must be programmed into the M1450.

To program the station number, first select the POSITION display. Press
RECALL. The display will show “S1" in the channel window, and the current
station number in the Position/RPM window. Use the ”+" or “-” key or the
numeric keys to select a new station number. When the desired station number
is in the display, press POSITION to program the number into the M1450’s
nonvolatile memory.

The station number of the M1450 must be different from the station number
selected for the 1771-KG. (The station number of the 1771-KG is set with SW-3,
SW-4 and SW-5 on the 1771-KG module, see Figure 2).

To program the communication (baud) rate, press RECALL again. The display
will show “S2" in the channel window and the current communication rate in
the Position/RPM window. Use the ”+" or “-” key to select the new com-
munication rate, and then press POSITION to program the new communication
rate. Note that the actual communication rate is 10 times the displayed number
("11" = 110 baud, “30" = 300 baud, "960" = 9600 baud...).

The M1450 communication rate must be the same as that selected for the
1771-KG (SW1 on the 1771-KG, see figure 2).

The M1450 Serial Cam Module is also available with RS-422 type outputs. The
connections for that module are listed below.

Pin number Signal Name Pin number Signal Name
1 Received Data 2 Received Data
2 Received Data 3 Transmitted Data
3 Transmitted Data 15 Signal Reference
4 ‘Transmitted Data
5 Signal Reference

Table 3, RS-232 Pinout

Table 2, RS-422 Pinout

3.2. Serial Link Programming

This section first describes the commands used to interface with the M1450.
The commands will be used in several sample programs. The programming
enable jumper on the M1450 has no effect on serial operations (programming
via the serial link cannot be locked out at the M1450 end).

The M1450-300 supports the following serial operations:
e Get status

o Clear channel

e Set offset

e Select channel

e Download

e Get channel setpoints
e Set channel setpoints
e Get motion limits

e Set motion limits

When you design your ladder program for the PC, you will manipulate certain
bits to send the above commands to the M1450. Data returned from the M1450
will be stored in areas designated by your program. You can then use this data
to monitor or modify the operation of the M1450.

In order for your program to do any communicating, you must insert a “com-
munications zone” into your program to allow the 1771-KG serial module to
function. The communications zone (defined by Allen-Bradley) must be in the
special format explained below.

The HEADER rung starts the communications zone. The address of the first
GET instruction is the “local” station number (the station number of the
1771-KG module). In this example, the local station number is 010. The data
at this address is ignored (shown by XXX). '

The address of the second GET instruction tells the 1771-KG where to store
error information (in word 077 for this example). The data at this address
(shown by EEE) is the current status or error word.

The address of the third GET instruction is the communications time-out code.
If the 1771-KG module doesn’t get a reply from the M1450 within the period
specified, an error condition is generated. In this example, the time-out code
015 represents S seconds. A time-out code of 010 will disable the time-out
function completely (the time-out code is figured by adding 8 to your desired
time-out (in seconds) and converting to octal, e.g. 8 + 5seconds = 13, which
is 15 in octal). The header rung MUST end with a LATCH 02707 instruction.

Header rung:
! 010 077 015 027 !
+—{G}—I[G]—I{G] L —+
1 XXX EEE XX 07 !

The second rung of the communications zone is a command rung. You will have
one command rung for each different command you will want to send to the
M1450.

The first EXAMINE ON in the command rung is the START BIT. When this
bit is set by your program, the corresponding command rung will be executed.

The second EXAMINE ON in the command rung tells the 1771-KG two things:

e The word address (020 in the example) tells the AB to which (remote)
station this command is to be sent. The number you program here
must be the same as the number you programmed into the M1250
(converted to octal).

o The bit address (01) tells the AB that we are reading data FROM the
M1250. A bit address of 03 tells the AB that we are sending data TO
the M1250. The bit address must always be 01 or 03.

The address of the first GET instruction in the command rung is the serial
COMMAND to be sent to the M1250. The data at this address (shown by XXX)
is ignored. In this example, the command is 010, a GET STATUS command.

The addresses of the second and third GET instructions tell the AB where to
put the received data (in the case of a read command) or where to get the data
to be sent (in the case of a write command). The addresses you program here
specify a BLOCK of memory - the first address is the BEGINNING of that block
and the second address is the END of that block. DDD represents the data to
be sent or received.

3.2.1.

In this example, the status data we receive from the M1250 will be stored in
words 120 to 126.

Each command rung must end with an ENERGIZE 02707 instruction.

Command rung:

! 020 020 010 120 126 027 !
+—] [—] [—{G]—I[G]—{G] ()—+
! 10 01 XXX DDD DDD 07 !

The delimiter rung is used to end the communications zone and must be in the
form shown below.

Delimiter rung:
! 027 !
+ (U)—+
! 07 !

The commands and their expected replies are explained below.

Get Status

The Get Status command returns the current M1450 status to the PC. Itis a
block READ command (command number = 010). This function returns up to
7 words of status information in the order listed below. Note that all the status
words need not be read. If a program only requires RPM data, just read only
two words. Reading three words will return RPM and position data.

Example GET STATUS command rung:

! 020 020 010 120 126 027 !
+—1 [—] [—IG—I6l—{G] (1—+
! 10 01 XXX 000 999 07 !

After this command is completed, the following data will be in the PLC’s data
table:

Word 120: 1000’s digit of the tach reading (RPM).
Word 121: 100’s, 10’s and 1’s digits of the tach (RPM).
Word 122: Current position, 0 to scale factor (999 max)
Word 123: Machine offset, 0 to scale factor (999 max)
Word 124: Status, encoded as follows:

Bit 0 =End of channel: set when the last channel setpoint is found during
the read channel function. Cleared by a Select Channel Number com-

mand.

Bir 1 =Busy: a function is already in progress.

All other bits = 0.
Word 125: Channel number for the read setpoints function
Word 126: Scale factor (999 in example).

3.2.2.

3.2.5.

3.23.

3.2.4.

-

Clear Channel

The Clear Channel command clears (erases all setpoints from) a cam channel.
This is a block WRITE command (command number = 011). The channel
number is the first word of the data field. For large scale factors the clear
channel command can take up to 65 seconds to complete, so the automatic
time-out function of the 1771-KG module should be disabled (by setting the

time-out code to 010).

Example CLEAR CHANNEL command rung:
! 020 020 o011 120 120 027 !
+—] [—1 [—IG]—I[G]—I(C] ()—+
1 11 03 XXX 001 00f 07 !

Word 120 = Channel to be cleared (Channel #1 in the example).

Set Offset

The Set Offset command programs a new machine offset into the M1250. This
is a block WRITE command (command number = 012). The new machine
offset is the first word of the data field. Note that a machine offset of 000
performs an “autozero” function on the M1450.

Example SET MACHINE OFFSET command rung:

! 020 020 012 120 120 027 !
+—] [—] [—[6]—I[G}-—IG} (F—+
1 12 03 XXX 100 100 07 !

Word 120 = New machine offset (offset = 100 in the example).

Select Channel

The Select Channel command selects the channel number for the next read
channel setpoints command. This is a block WRITE command (command
number = 013). The new channel number is the first word of the data field.
Note that this command only affects the channel setpoint read function.

Example SELECT CHANNEL command rung:

! 020 020 013 120 120 027 !
+—] —] [—I6I—IGI—IG} (—+
! 12 03 XXX 005 005 07 !

Word 120 = Next channel to be read (chanhel #5 in the example).

Download

The Download command allows you to combine many write commands into
one. This is a block WRITE command (command number = 045). The general
format for the data field is shown below. Note that the maximum data field size
is 122 words. Since this command can take a long time to complete, the
automatic time-out function of the 1771-KG module should be disabled (by
setting a time-out code of 010).

3.2.6.

Word 1: Command length (number of words that make up the following com-
mand string).

Word 2: Command, valid commands are:
11 - Clear channel
12 - Set machine offset
55 - Program channel
56 - Clear then program channel
65 - Set motion limits.
Word 3. First word of command data.
Word 3 + N: Last word of command data (N words long).

After the last word of the command data, a new command field begins (all
command fields begin with the command length).

Example DOWNLOAD command rung:
! 020 020 045 120 200 027 !
+—]] [G]—IG}—{G] ()y—+
! 12 03 XXX LLL DDD 07 !

Word 120 = Start of first command string (length LLL)

Word 121 = First command (command number DDD) °

Words 122 through 122 + N = data for first command (N words)
Word 122 + N + 1 = Start of second command string

NOTE, see example program #1 for further clarification.

Get Channel Setpoints

The Get Channel Setpoints command reads the setpoints from the selected
channel. This is a block READ command (command number = 054). This
function returns the setpoints of the channel number set by the SELECT
CHANNEL command. This function only returns the number of setpoints
specified.

The user should check the end of channel status bit after each read command.
When the end of channel bit gets set, the user knows the entire channel has been
read. If the user expects more setpoints than are actually stored, the unused

setpoints will be returned as zeros.

Example GET CHANNEL SETPOINTS command rung:
! 020 020 054 120 123 027 !
+—] [—] [—I[G}—IG]—I(G] ()—+
10 01 XXX 010 225 07 !

Word 120 = First ON angle (10 in example)
Word 121 = OFF angle
Word 122 = ON angle

10

3.2.7.

3.2.8.

3.2.9.

Word 123 = OFF angle (225 in example).

Set Channel Setpoints

The Set Channel Setpoints command programs new setpoints into a cam
channel. This is a block WRITE command (command number = 055). The
first word of the data field specifies the number of setpoints to be programmed,
the second word contains the channel number, and the remaining words are the
new setpoints. There must be an even number of setpoints, and the ON angle
must be first. Depending on scale factor, the length and number of setpoints
being programmed, the program channel command can take a long time to
complete, so the automatic time-out of the 1771-KG module should be disabled
(by setting the time-out code to 010), except when fine tuning a set point.

Example SET CHANNEL SETPOINTS command rung;:

I 020 020 0S5 120 124 027 !
+—] [—] [—IG}—IG}—IG] ()—+
I 17 03 XXX 005 400 07 !

Word 120 = Channel number

Word 121 = ON angle

Word 122 = OFF angle

Word 123 = ON angle

Word 124 = OFF angle

Get Motion Limits

The Get Motion Limits command returns the current low and high motion limits
programmed in the M1450. This is a block READ command (command number

= 064). Four words are always returned, the first pair of data words is the low
motion limit and the second pair of words is the high motion limit.

Example GET MOTION LIMITS command rung:

! 020 020 064 120 123 027 !
+—] [—] —1Gl—{Gl—{G] (y—+
! 15 01 XXX 000 500 07 !

Word 120:121 = low motion limit (1000’s digit in word 120)
Word 122:123 = high motion limit (1000’s digit in word 122)

Set Motion Limits

The Set Motion Limits command programs new motion limits into the M1250.
This is a block WRITE command (command number = 065). The first pair of
words of the data field specify the new low motion limit, and the second pair
specifies the new high motion limits.

Example SET MOTION LIMITS command rung:

! 020 020 065 120 123 027 |
+—] [—] [—IG}—IC]—IG] ()—+
t 15 03 XXX 000 399 o7 !

Word 120:121 = low motion limit (1000’s digit in word 120)
Word 122:123 = high motion limit (1000’s digit in word 122)

3.3. Errors

The error codes returned by the M1450 (in the STS field) are:
Error 01: Invalid command due to error in command, size or data.

Error 09: M1250 is busy executing the previous command and cannot begin
another.

All commands reply after completion.

3.4. Timing

The amount of time for the commands to execute and reply depends on the
command, the communication rate and the program size. The nominal time
intervals given below are from the start of transmission (header rung scanned)
from the 1771-KG to the end of response reception (by the 1771-KG).

All times assume the communication rate is 9600 bits/sec.

Status command (full): 50 msec.

Clear channel: depends on scale factor (see table 4).

Set offset: 100 msec.

Select channel: 35 msec.

Set motion limits: 715 msec.

Get motion limits: 40 msec.

Program channel: depends on scale factor & number of setpoints (see table 4).
Read channel: 30 msec + 10 msec per setpoint.

Download: Depends on number/type of commands and scale factor (see table
4). For example, if an M1450 channel has a setpoint of 20 to 30 degrees (scale
factor = 359) and it is desired to change to 17 to 30 degrees, it would take about
3 degrees * 100 msec/degree = 300 msec.

3.5. Example Programs

The example programs demonstrate how the above commands may be imple-
mented.

Program 1 (appendix 1) demonstrates a simple initialization sequence. Upon
detecting an external switch closure, the program sets the machine offset, sets

12

Scale Factor Clear/Pgm Chan
(msec/degree)
50 460
100 270
200 155
300 117
359 100
400 g8
500 - 86
600 78
700 73
800 69
900 66
999 64

Table 4, Scale Factor vs. Execution Time

the motion limits, clears and programs a number of cam channels. An output
is energized when the initialization is completed.

Program 2 (appendix 2) modifies the M 1450 machine offset based on speed.
The program will read the tach continuously (by a Get Status command). If an
external switch is on (closed), then for every 10 RPM the machine offset is
advanced by one degree.

Program 3 (appendix 3) modifies M1450 cam setpoints based on speed. The
program normally reads the tach continuously. If an external switch is on
(closed), then for every 10 RPM, the ON angle of a cam module channel is
advanced by one degree.

Each program is broken into three general sections. The first section of our
program contains the program logic.

The second section of each program is the communication zone. This zone
consists of a header rung, command rungs and a delimiter rung. Note that there
is a separate rung for each command.

The third section of each program monitors each command for completion and
resets (unlatches) the appropriate start bit.

1. AEEendix 1

This program demonstrates a a procedure for loading the M1450 from an
Allen-Bradley PC. The download will program the machine offset, the motion
limits and a cam module. You would run this program after a new installation,
to change a program, or any time you are unsure of the current setup of the
M1450.

Let’s say we want to program the following data into our M1450:
e Machine offset = 20
e Low motion limit = S RPM
o High motion limit = 1,234 RPM
e Cam channel 1 ON at 0, off at 10 degrees
e Cam channel 2 ON at 10, off at 20 degrees
e Cam channel 3 ON at 20, off at 30 degrees
e Cam channel 4 ON at 30, off at 40 degrees
e Cam channel 5 ON at 40, off at 50 degrees
e Cam channel 6 ON at 50, off at 60 degrees
e Cam channel 7 ON at 60, off at 70 degrees
e Cam channel 8 ON at 70, off at 80 degrees.

Our program will wait for an external switch closure, then send the commands
to the M1450. After the M1450 completes the initialization, our program will
energize an output to tell us we’re all done.

We can break our program into three general sections. The first section of the
program contains the program logic, the second section of the program is the
communications zone and the third section of the program monitors each
command for completion and resets (unlatches) the appropriate start bit.

First, let’s figure out where we’ll store our data in the Allen-Bradley’s data table.
Refer to the data table configuration figure for your PC, which shows the data
table organization.

Let’s start with the communications zone. We’ll need a word to hold the START
and DONE bits. We’ll choose the first available word of bit/word storage,
address 020. AB has defined the upper 8 bits of the word as STAKRT bits, and
the lower 8 bits as DONE bits. The Allen-Bradley automatically uses the next
address (word 021) as the remote/local fault storage word.

Start bit word = 020, bit 020.10 = DOWNLOAD function start bit
Done bit word = 020, bit 020.00 = DOWNLOAD function done bit
Local fault word = 021 (bit 021.00) ‘

14

Remote fault word = 021 (bit 021.10)

We also need to set up a word for fault information storage. We’ll use word 077
in this example. Other information we need to know is the station numbers of
the M1450 and the Allen-Bradley. These numbers were set up at installation

_(see the installation section of this manual).

Error word = 077
Local station number = 8 (010 octal)
Remote (M1450) station number = 16 (020 octal)

Since the DOWNLOAD command can take a long time to complete, we will
disable the back up timer for the 1771-KG by setting its value = 010 octal (you
may program a separate timer to monitor the communications if desired).

Timeout value = disabled (010)

The last information we need for the communications zone is the data to be sent
to the M1450. For this, we need a large number of contiguous (adjacent) word
storage. From the data table organization figure, we see that a large block of
memory starts a word 120, so this is where we’ll store our data.

Program data organization:
Offset command
Word 120 command length (2 words)
Word 121 command (12 = set offset)
Word 122 new machine offset (020)
Set motion limits command
Word 123 command length (5 words)
Word 124 command (65 = set motion limits)
Word 125-6 new motion low limit (0005)
Word 127-30 new motion high limit (1234)
Program channel 1
Word 131 command length (4 words)
Word 132 command (56 = clear/program channel)
Word 133 channel number (001)
Word 134 ON angle (000)
Word 135 OFF angle (010)
Program channel 2
Word 136 command length (4 words)
Word 137 command (56 = clear/program channel)
Word 140 channel number (002)
Word 141 ON angle (010)

Word 142 OFF angle (020)
Program channel 3
Word 143 command length (4 words)
Word 144 command (56 = clear/program channel)
Word 145 channel number (003)
Word 146 ON angle (020)
Word 147 OFF angle (030)
Program channel 4
Word 150 command length (4 words)
Word 151 command (56 = clear/program channel)
Word 152 channel number (004)
Word 153 ON angle (030)
"Word 154 OFF angle (040)
Program channel §
Word 155 command length (4 words)
Word 156 command (56 = clear/program channel)
Word 157 channel number (005)
Word 160 ON angle (040)
Word 161 OFF angle (050)
Program channel 6 .
Word 162 command length (4 words)
Word 163 command (56 = clear/program channel)
Word 164 channel number (006)
Word 165 ON angle (050)
Word 166 OFF angle (060)
Program channel 7
Word167 command length (4 words)
Word 170 command (56 = clear/program channel)
Word 171 channel number (007)
iord 172 ON angle (060)
Word 173 OFF angle (070)
Program channel 8
Word 174 command length (4 words)
Word175 command (56 = clear/program channel)

1R

Word 176 channel number (008)
Word 177 ON angle (070)
Word 200 OFF angle (080)

All the above data is stored in the PC from the programming terminal using
GET statements. After pressing the [G] key, enter the word address above the
[G). The data at this address will be shown below the [G] and you can alter the
data by using the numeric keys. We have the DOWNLOAD switch wired to an
input module which is installed in module group 1 of rack 1 (terminal 0) of the
AB J/O chassis. A DOWNLOAD COMPLETE indicator is wired to an output
module which is installed in module group 1 of rack 1 (terminal 0) of the AB
I/O chassis.

o External switch is input 111 10.
e Download complete output is 011 00.

1.1. Program Logic

This section contains the program logic and controls the start bit for the
command. The first rung tests the external switch for closure. When the switch
is closed, the output indicator is turned off. Rung two latches the start bit for
the INITIALIZE command. Note that once the start bit is latched, it cannot be
latched again until the START and DONE bits are reset (i.e., the initialization
is complete).

Reset DOWNLOAD COMPLETE output

START
I 110 o1t !
+—1 [U—+
! 10 00 !
Set DOWNLOAD start bit
! 110 020 020 020 !
+—1 == (L—+
! 10 00 10 10 !

1.2. Communication Zone

This section is the communications zone of this program. The first rung is the
header rung. All communications zones MUST start with a header rung. The
address of the first GET specifies the LOCAL station number. In this example,
the local station number is 10 (octal). The address of the second GET is the
communications error word address. The address of the third GET specifies
the timeout period, or how long the Allen-Bradley will wait for the M1450 to

reply.
The rung after the header rung is the COMMAND rung. The command rung

contains the M1450 command. The first EXAMINE ON of the command rung
is the start bit test. When the start bit is set, the EXAMINE ON becomes true

and the command rung is activated. The second EXAMINE ON specifies the
REMOTE station number (which M1450 the command is to be sent to) and the
command type (unprotected block read = 01, unprotected block write = 03).
The address of the first GET instruction is used as the command number for the
M1450. This command number tells the M1450 what to do. The next pair of
GET addresses specify where to put received information or where to get
information to be sent (these are addresses in the PC, not the M1250). Each
command rung MUST end with an ENERGIZE 02707 instruction. The last
rung of the communications zone is the delimiter rung. This rung is required
and consists of a single UNLATCH 02707 instruction. The data denoted by
XXX appearing below the GET instructions is not used (ignored). The data
denoted by DDD appearing below the GET instructions is part of the data sent
or received by its associated command.

Communications zone header rung

{ 010 077 010 027 !

+—[G}—[G}—I[G] L—-+

FOoXXX XXX XXX 07 !
DOWNLOAD command rung

! 020 020 045 120 200 027 !

+—] [—] [—{Gl—[G]—I(G] ()—+

! 10 03 XXX XXX XXX 07 !

Communications zone delimiter rung

! 027 !
+ (U)—+
! 07 !

1.3. Completion Logic

This section is used to end the commands. When the command finishes, we
must reset (unlatch) the start bit. In this program, the start bits will be unlatched
when the DONE bit is set (true) OR when a fault (local or remote) occurs.

Tiurn on completion output
! 020 o1 !
+—1 1 L—+
' 00 00 !

Reset DOWNLQAD start bit

020 020 !
+—] =+ U—-+
! 0o ! 10 !
I 021 !
+—] [—+
! 00 !
! 021 !
+—] [—+
! 10

Assuming that all the cam channels were empty, this program would take about
8.2 seconds to complete.

!
!
!
!
!
!

1. AEEendix 2

Program 2 advances the M1450’s machine offset by one degree for every
increase of 10 RPM, when an external input is closed.

On each scan, if the external input is on, the M1450 tach and machine offset are
read (using a Get Status command). The tach reading is then divided by 10 to
get the number of degrees to advance the offset by. That number is subtracted
from the 0 RPM offset (100), and the result is the new machine offset. To avoid
continually changing the offset (and to make sure the offset did get changed),
the new offset is check against the current offset. If the offsets do not match,
the new machine offset is copied into the offset command string and the offset
command is sent to the M1450.

Note that this program will only work correctly for tach readings of less than
1000 RPM. Also remember that machine offset (and cam programs) are stored
in EEPROM, and these devices will 'wear out’ after 10000 store cycles. For this
reason, new parameters should only be stored when they have changed.

The program is broken into four general sections. The first section of the
program contains the program logic. The second section of the program is the
communications zone. This zone consists of a header rung, command rungs and
a delimiter rung. Note that there is a separate rung for each command.

The third section of the program monitors each command for completion and
resets (unlatches) the appropriate start bit.

The fourth section of the program just displays the data that is sent or received
for each command.

Memory setup:
Start bit word = 020
bit 020.10 = GET STATUS function start bit
bit 020.11 = SET OFFSET function start bit
Done =1: word = (020
bit 020 00 = GET STATUYS, function done bit
bit 020 01 = SET OFFSET function done bit
Local fault word = 021 (bits 021 00 and 021 01)
Remote fault word = 021 (bits 021 10 and 021 11)
General bit flag word = 022
bit 022 00 = set when computed offset equals current offset
bit 022 01 = dummy bit
External input = 111 10
1771-KG error word = 030

1.1.

Local station number = 8 (010 octal)
Remote (M1250) station number = 16 (020 octal)
Timeout value = 5 sec
. Words 120:123 = status data
Word 120:121 = RPM
Word 122 = position (not used)
Word 123 = offset
Word 124 = new offset
Word 23 = tach divisor (constant, = 10)
Word 24:25 = offset “dwell” (quotient of tach/10)
Word 26 = base offset (= 100)

Start Logic

This section controls the start bits for each of the commands. The Get Status
function runs continuously so the tach reading is current. The second rung
divides the tach reading by 10 to get the amount to change the offset by. The
third rung subtracts the offset adjustment from the base offset (100) and puts
the result in the offset command string. The fourth rung compares the new
offset to the current offset, and sets (energizes) a bit only when the offsets are
equal. The fifth rung sends the offset command only if the offsets were not
equal. Note that the get status start rung (#1) and the set offset start rung (#5)
can only be active when the external switch (bit 111 10) is on).

GET STATUS start bit rung

START
! 111 020 020 020 020 020 !
+—] ==Vl (L—+
! 10 00 10 O1 11 10 !

Get 10% of tach reading

1 121 023 024 025 !
+—1G—{G (—(:)—+
{ TIT 010 QaQ. aQQ !

(TTT = current tach data, QQQ.QQQ = “dwell”)
Subtract dwell from base offset

! 026 024 124 !
+—{61—I@) (=)t
1 100 QQQ xx !

(QQQ = 10% of current tach, XXX = new machine offset)

Compare new offset to current offset

! 124 123 022 !
+—[G}—{ =] ()—+
XXX MMM oo !

(XXX = new offset, MMM = current offset)

Start offset function
! 111 022 020 020 020 020 020 !
+—Y[——)/[———)I L—+
! 10 00 00 10 01 M1 11 !

1.2. Communication Zone

This section is the communications zone of this program. The first rung is the
header rung. All communications zones MUST start with a header rung. The
address of the first GET specifies the LOCAL station number. In this example,
the local station number is 10. The address of the second GET is the com-
munications error word address. The address of the third GET specifies the
timeout period, or how long the Allen-Bradley will wait for the M1450 to reply.

The two rungs after the header rung are COMMAND rungs. Each rung repre-
sents a different M1450 command. The first EXAMINE ON of the command
rungs is the start bit test. When the start bit is set, the EXAMINE ON becomes
true and the command rung is activated. The second EXAMINE ON specifies
the REMOTE station number (which station the command is to be sent to) and
the command type (unprotected block read = 01, unprotected block write =
03). The address of the first GET instruction is used as the command number
for the M1450. The command number tells the M1250 what to do. The next
pair of GET addresses specify where to put received information or where to
get information to be sent (these are addresses in the PC, not the M1450). Each
command rung MUST end with an ENERGIZE (02707 instruction.

The last rung of the communications zone is the delimiter rung. This rung is
required and consists of a single UNLATCH 02707 instruction. The data
denoted by XXX below the GET instructions is not used. The data denoted by
DDD below the GET instructions is part of the data sent or received by the
associated command.

Communications zone header rung

! 010 030 015 027 !

+—|[G]—[G]—IG} L—+

PooXXX XXX XXX 07 !
GET STATUS command rung

! 020 020 010 120 123 027 !

+—] [—] [—I[G}—{G]—I(G] () —+

! 10 01 XXX DDD DDD 07 !

SET MACHINE OFFSET command rung
! 020 020 012 124 124 027 !
+—] [—] —IGl—IG]—IG] ()—+
! 11 03 XXX DDD DDD 07 !

Communications zone delimiter rung

| 027 !
+ (Uy—+
1 07 !

1.3. Completion Logic

This section is used to end the commands. When the command finishes, we
must reset (unlatch) the start bit. In this program, the start bits will be unlatched
when the DONE bit is set (true) OR when a fault (local or remote) occurs.

GET STATUS completion rung

020 (done bit test) 020 !
] I—+ . Uy—+

=)
R
3
3
&
&
=
2

SET OFFSET completion rung

{020 020 !
+—] —+ u—+
' 01 ! 1"
1021 ! '
+—] —+ !
! o1 ! !
|
|
1

v 021 !
+—] [—+
! 11

1.4. Program Data

This section is just a display/data area for the above commands.

Memory display rung
1 120 121 122 123 124 022 !
+—I[G}]—I{G]—{G}—I{G}—{C} ()—+

i aaa bbb ccc ddd eee o1 !

aaa:bbb = RPM

ccc = position

ddd = current machine offset
eee = programmed offset

The amount of time from a change in RPM to the new offset stored in the M1450
will be about 140 msec, but this will vary greatly depending on RPM (the higher
the RPM, the "busier’ the M1450 becomes, hence it has less time to do every-
thing).

. Ageendix 3

Program 3 modifies M1450 cam setpoints based on speed and an external input.
On each scan, the program reads the current tach from the M1450. For each 10
RPM increment, the cam setpoint ON angle is advanced by one degree (provid-
ing an external switch is on). This program is broken into three general sections.
The first section of the program contains the program logic.

The second section of the program is the communications zone. This zone
consists of a header rung, command rungs and a delimiter rung. Note that there
is a separate rung for each command.

The third section of the program monitors each command for completion and
resets (unlatches) the appropriate start bit.

Memory setup:
Start bit word = 020 (bits 020 10 to 020 17)
bit 020 10 = GET STATUS function start bit
bit 020 11 = PROGRAM CHANNEL function start bit
Done bit word = 020 (bits 020 00 to 020 07)
bit 020 00 = GET STATUS function done bit
bit 020 01 = PROGRAM CHANNEL function done bit
Word 120:121 = current M1250 tach
Wword 122:125 = program channel command string
Word 023 = tach divisor (constant, = 10)
Word 024:025 = setpoint adjustment (quotient of tach/10)
Word 026 = base ON angle (100)
Word 031 = previous ON angle
Local fault word = 021 (bits 021 00 and 021 01)
Remote fault word = 021 (bits 021 10 and 021 11)
Bit variables = 022
bit 022 00 = change setpoints
bit 022 01 = enable channel programming
bit 022 02 = channel programming complete
bit 022 03 = dummy bit
Error word = 030
Local station number = 8 (010 octal)
Remote (M1250) station number = 16 (020 octal)

1.1,

Timeout value = 5 seconds

Start Logic

This section controls the start bits for each of the commands. The first rung
starts a Get Status function continuously so the tach reading is current. The
second rung computes 10% of the tach reading, the result being the “dwell” to
apply to the base ON angle. The third rung subtracts the dwell angle from the
base ON angle to get the new ON angle. Rung 4 compares the new ON angle
to the previous ON angle. If the two angles are equal, bit 022 00 is set.

Rung 5 examines bit 022 00. If the bit is off, meaning the ON angle needs to be
changed, bit 022 01 is latched, and remains latched until the program setpoints
command completes. Rung 6 also examines bit 022 00, and if the bit is off, the
new ON setpoint angle is copied to the program channel command string. Rung
7 examines the latched bit 022 01. If the bit is set (ON angles are not equal),
the new ON angle is programmed.

GET STATUS start bit rung
! 111 020 020 020 020 020 !
+—] /=1 =1/ = L)—+
! 10 00 10 01 1 10 !
Get 10% of tach
! 121 023 024 025 !
+—[G]—{G] (:)—(:)—+
t TIT 010 QQQ QQQ !

(TTT = current tach data, QQQ.QQQ = “dwell”)
Subtract dwell from base ON angle

! 026 024 031 !
+—{G]—[G] (-)—+
! 100 QQQ XX !

(QQQ = dwell, XXX = new ON angle)
Compare new ON angle to old ON angle

! 031 124 022 !
+—{G}—{ =] ()—+
I 88§ XXX oo !

(SSS = new setpoint, XXX = previous setpoint)

Latch angle change status
! 022 022 !
+—]/1 L—+

! 00 o1 !

Load new ON angle setpoint

! 022 031 124 !
+—1/[—IG] (PUT)—+
! 00 SSS XXX !

(SSS = new setpoint, XXX = previous setpoint)

PROGRAM CHANNEL start bit rung
! 111 022 020 020 020 020 020 !
+— /=1 =1 =1 =1 = L—+
! 10 01 00 01 10 11 11!

1.2. Communication Zone

This section is the communications zone of this program. The first rung is the
header rung. All communications zones MUST start with a header rung. The
address of the first GET specifies the LOCAL station number. In this example,
the local station number is 10. The address of the second GET is the com-
munications error word address. The address of the third GET specifies the
timeout period, or how long the Allen-Bradley will wait for the M1450 to reply.

The two rungs after the header rung are COMMAND rungs. Each rung
represents a different M1450 command. The first EXAMINE ON of the
command rungs is the start bit test. When the start bit is set, the EXAMINE
ON becomes true and the command rung is activated. The second EXAMINE
ON specifies the REMOTE station number (which station the command is to
be sent to) and the command type (unprotected block read = 01, unprotected
block write = 03). The address of the first GET instruction is used as the
command number for the M1450. This command number tells the M1450 what
to do. The next pair of GET addresses specify where to put received information
or where to get information to be sent (these are addresses in the PC, not the
M1450). Each command rung MUST end with an ENERGIZE 02707 instruc-
tion.

The last rung of the communications zone is the delimiter rung. This rung is
required and consists of a single UNLATCH 02707 instruction. The data
denoted by XXX below the GET instructions is not used. The data denoted by
DDD below the GET instructions is part of the data sent or received by the
associated command.

Communications zone header rung

{ 010 030 015 027 {

+—[G}—[G]—IG] L)—+

XXX XXX XXX 07 !
GET STATUS command rung

t 020 020 010 120 12 027 {

+—] [—] [—IGl—{Gl—IG] ()—+
! 10 01 XXX DDD DDD 07 !

PROGRAM CHANNEL command rung

! 020 020 055 122 125

027 !
()—+

+—] [—] [—I[G}—I[G]—I[G]
! 11 03 XXX DDD DDD

Communications zone delimiter rung

07 !

027 !

+
!

1.3. Completion Logic

This section is used to end the commands. When the command finishes, we
must reset (unlatch) the start bit. In this program, the start bits will be unlatched

when the DONE bit is

set (true) OR when a fault (local or remote) occurs. In the case of the PRO-
GRAM CHANNEL command, a bit (022 02) is set which in turn resets the start

bit and unlatches the command enable bit.
GET STATUS completion rung
! 020 (done bit test)

U)—+
07 !

+—] [—+

! oo !

! 021 ! (local fault test)
+—] [—+

! oo !

! 021 ! (remote fault test)
+—] [—+

! 10

PROGRAM CHANNEL completion rung

! 020

022 !
{ +

+—] [—+
!
!

02

020 !
{U)—+

11 !

022 !
U)—+

11!

The amount of time from a detected RPM change to the new channel program
will be about 40 msec + 100 * the number of degrees being added or deleted.
Again, this will vary for the same reasons given in the second example.

1. M1450 Serial Module Agelication Note

This application note covers the technical aspects of interfacing to the M1450
serial module. The serial module is intended to communicate with an Allen-
Bradley 1771-KG module, which uses a non-trivial communications protocol.
When using the M1450 with the KG module, the user inserts a “communications
zone” in the ladder program which instructs the 1771-KG what and when to
send. The serial protocol is invisible to the user. However, if you want to connect
the M1450 to a different controller or computer, then you must understand the
details of the protocol if you want to communicate with the M1450.

This note, as a supplement to the standard manual and the 1771-KG manual,
should provide the data you need. The routines in this note are all written in
the 'C’ programming language for use on an IBM or compatible PC. The
low-level transmit & receive routines are not included here because they are

system dependent.

For this program, the transmit routine was called for each byte sent, hence a
simple polling routine could be used. The receive routine for this program is

interrupt-driven. The interrupt routine stores each character in a 256 byte

circular buffer named 'rx_buffer’. Another simple routine is required for
initializing the UART. The UART should be configured for an 8 bit/word, no
parity, 1 stop bit and the desired baud rate. The baud rate at both ends of the
communications link must be equal.

/* Define communications link control characters */

#define DLE 0x10 /* Data Link Escape */

#define STX . 0x02 /* Start of Text */

#define ETX 0x03 /* End of Text */

#define ENQ 0x05 I* Enquire */

#define ACK 0x06 I* Acknowiedge (ok) */
#define NAK ox15 I* Not Acknowledge (not ok) */

#define UNPROT_BLK WR_CMD 0x08 * A-B unprotected block write cmd */
#define UNPROT_BLK RD_CMD Ox01 * A-B unprotected block read cmd */

/* M1450 Serial link commands */

/* Serial link commands (translation from A-B logical to physical address (per Appendix
C.2 of the 1771-KG manual.) */

#define STAT_CMD 0x0010 /* read 1450 status */
#define CLR_CH_CMD 0x0012 /* clear channel */
#define OFS_CMD 0x0014 /* program offset */

#define SET_CH_CMD 0x0016 /* set channel # */
#define RD_TACH_CMD 0x0068 /* read motion limits */
#define RD_CH_CMD 0x0058 /* read channel setpoints */

#define WR_TACH_CMD Ox006A /* program motion limits */

#define WR_CH_CMD Ox005A /* program channel setpoints */

#define DOWN_CMD 0x004A /* download command */

#define DOWN_CCH_CMD 0x0011 /* download subcommand- clear chan */
#define DOWN_OFS_ CMD 0x0012 /* download subcommand- set offset */
#define DOWN_WCH_CMD 0x0055 /* download subcommand- prog chan */
#define DOWN_CPCH_CMD 0x0056 /* download subcommand- clear & prg chan */
#define DOWN WT_CMD 0x0085 /* download subcommand- set motion limits */

/* Global variables... */

char rx_buffer [256], tx_buffer [80], eom_flag;
int input_ofs, dsply_ofs, dest_station, src_station, msg_ofs, rx_len;
unsigned tx_cre, trans, calc_rx_crc;

/ttQQ***Q'*"tttttttt*t't'itt**t*t'tti**QQ*"**Q****Q'**""Q***ttt*t'tttttiit*

*

* status ()

*

* Reads the current M1450 status:

* channel

* offset

* position

* scale factor
* RPM

* status

* Command format:

* Unprotected block read
* addr field = STAT_CMD
* data field = number of bytes to be returned

* Example output string with local station number = 8, remote station = 16

* 0x10 DLE

* 0x02 STX

* 0x10 destination station

* 0x10 (DLE insertion)

* 0x08 source station

* 0x01 unprotected block read command
* 0x00 status

* 0x00 transaction # (is)

* 0x00 transaction # (ms)

* 0x10 M1450 status command (is)
* 0x10 (DLE insertion)

* 0x00 M1450 status command (ms)

* Ox0E number of bytes to be read

* 0x10 DLE

* 0x03 ETX

* OxE7 checksum (is)
* 0x38 checksum (ms)

"'tf"t'ﬁ'itttt*'*"t*tt'it'i*tt*tt'*ﬁ"tttttt*'t"*t*!tt"t'*t"t'*t'*ttt*t/

int status ()

int data_buff [32],
unsigned status, channe!, offset, position, scale_factor, rpm,

/* Reset values to 200 */
status = channel! = offset = position = scale_factor = rpm = 0;

* Set the number of bytes to be retumed by the M1450:

status: 1 A-Bword = 2 bytes
channel: 1 A-B word = 2 bytes
offset: 1 A-Bword = 2 bytes
position: 1 A-B word = 2 bytes
scale factor: 1 A-B word = 2 bytes
rpm: 2 A-B words = 4 bytes

*/
data_buff [0] = 14;

/* Send the status command (data field is 1 byte long) */
send (STAT_CMD, 0, °r’, 1, data_buff);

[* Wait for response from M1450 */

if ((temp = rx () && temp ! = NAK) {

next (); [* fetch dest:nation station # */
next (); /* fetch source station # */
next (); /* tetch command */

next (); /* fetch status */

next (); I* fetch tns low */

next (); /* fetch tns high */

* Convert RPM from two 3-digit BCD words to one packed BCD word */

rpm = next () < 12;
next ();

rpm | = next ();
rpm | = next () < 8;

/* Combine POSITION into one word */

position = next ();
position = position | (next () < 8);

/* Combine OFFSET into one word */

offset = next ();
offset = offset | {next { < 8);

/* Combine STATUS into one word */

status = next ();
status = status | (next (< 8);

/* Combine CHANNEL into one word */

channel = next ();
channel = channel | (next () < 8);

/* Combine SCALE FACTOR into one word */

scale_factor = next ();
scale_factor = scale_factor | (next 0 < 8);

}
return (TRUE);

-* get_motion_limits ()
* Reads the current motion limits from the M1450.
* Command format:

* Unprotected block read
* addr field = RD_TACH_CMD
* data field = number of bytes to be retumed (8)

* Example output string, local station number = 8, remote station = 16

* 0x10 DLE

* 0x02 STX

* 0x10 destination station

* ox10 (DLE insertion)

* 0x08 source station

* 0x01 unprotected block read command
* 0x00 status

* 0x01 transaction # (is)

an

* 0x00 transaction # (ms)

* 0x68 M1450 read motion limits command (Is)
* 0x00 M1450 read motion limits command (ms)
* 0x08 number of bytes to be read
* 0x10 DLE
* 0x03 ETX
* OxFD checksum (Is)
* OxE9 checksum (ms)
*
AN ARARE SR AARENER AR AR AR AR E RN TR TR AR EAEARRAERTRTRR L LR R TEREEEEEEEEE L 2 /
int get_motion_limits ()
{
int data_buff [32];

unsigned tach_lo, tach_hi;

* Reset data to 000 */
tach_lo = tach_hi = 0;

/* Set the number of bytes to be returned by the M1450:
low motion limit: 2 A-B words = 4 bytes

high motion limit: 2 A-B words = 4 bytes
*/ ’

data_buff [0] = 8;
* Send the command (data field is 1 byte long) */

send (RD_TACH_CMD, 0, 'r’, 1, data_buff);

it (~ 0) {
next (); J* fetch destination station # */
next (); I* fetch source station # */
next (); [* fetch command */
next (); /* tetch status */
next (); /* fetch tns low */
next (); /* fetch tns high */

* Convert low limit from two A-B BCD words to one packed BCD word */
tach_lo = next () < 12;
next ();
tach_lo | = next ();
tach lo | = next () < 8;
* Do the same for the high limit */

tach_hi = next () < 12;

next ();
tach_hi | = next (),
tach_hi | = next () < 8,
}
return (TRUE);

}

/ﬁ"'i*ttii't't'iﬁ’ttt‘*t*'!t**fﬁt't!tt!ttt'tttttﬁtt****t*ti*ttt'rltt#titttt*tt
*

* set_motion_limits (new_motion_high, new_motion_low)

*

»

Sets the M1450 motion limits.
* new_motion_low < new_motion_high < 1900
> 0 < new_motion_low < new_motion_high

* Command format:

* Unprotected block write
* addr field = WR_TACH_CMD
* data field = motion setpoints

* Example output string, local station number = 8, remote station = 16, low limit = 12,
* high limit = 1234:

* 0x10 DLE

* 0x02 STX

* 0x10 destination station

* 0x10 (DLE insertion)

* 0x08 source station

* 0x08 unprotected block write command

* 0x00 status -
* 0x02 transaction # (is)

* 0x00 transaction # (ms)

* Ox6A M1450 set motion limit command (is)
* 0x00 M1450 set motion limit command (ms)
* 0x00 Isbyte of msword of low limit

* 0x00 msbyte of msword of iow limit

* ;23 Isbyte of isword of low limit

* 0x01 msbyte of Isword of low limit

* 0x01 Isbyte of msword of hi limit

. 0x00 msbyte of msword of hi limit

* 0x34 Isbyte of Isword of hi limit

* 0x02 msbyte of Isword of hi limit

* 0x10 DLE

* 0x03 ETX

* OxF4 checksum (Is)

*

-

OxE2 checksum (ms)

'tt."*t'i't'it"tt’ﬁt'.’.t't'tii"'ti"ﬁ'ﬁ'*'.'ﬁ*titt*ttt"tt*i*"'ti"'/

int
int

{

set_motion_limits (new_motion_high, new_motion_low)
new_motion_high, new_motion_low;

int data_buff [32];

[* Spiit the motion low data into two words */

data_buff [1] = new_motion_low % 1000;
data_buff [0] = new_motion_low / 1000;

/* Split the motion high data into two words */

data_buff [3] = new_motion_high % 1000;
data_buff [2] = new_motion_high / 1000;

/* Send the command (data field is 4 bytes long) */

}

send (WR_TACH_CMD, 0, 'w, 4, data_buff);
~x(;

return (TRUE);

,t*t'Qtt.'ft'.tt"t't"t.'*'.t'ittt.'*"'.t'.ttt't'..t'".Qttt*"t"ﬁ...tﬁt'tt

*

* set_offset (new_offset)

*

Sets the M1450 offset.
0 < new_oftset < 1000

Command format:
Unprotected block write
addr field = OFS_CMD
data field = new offset

Example output string, local station number = 8, remote station = 16, new oftst = 123

0x10 DLE

0x02 STX

0x10 destination station

0x10 (DLE Insertion)

0x08 source station

0x08 unprotected biock write command
0x00 status

* 0x03 transaction # (is)

* 0x00 transaction # (ms)

* 0x14 M1450 set offset command (is)
* 0x00 M1450 set offset command (ms)
* 0x23 Isbyte of new offset

* 0x01 msbyte of new offset

* 0x10 DLE

* 0x03 ETX

* 0x01 checksum (Is)

* 0xB2 checksum (ms)

t'tt'*t*tt*t**t*ti*it'fi**ttt*tt*t'ﬁttii't*tt**ti*tt**t*tttt.*t**"t't**t*tt/

int set_offset (new_offset)
int new_offset;
{

it data_buff [32];
data_buff [0] = new_oftset;
/* Send the data command (data field is 1 byte long) */

send (OFS_CMD, 0, 'w’, 1, data_buff);
™~ ();
return (TRUE);

}

/ttt"Qt't't"'t"tttt't"t't"'*ti*tit"t'ttt'tt"t't*t**ﬁtt'**ttt*'ittt*i*ﬁ

*

* set_channel_number (new_channel)

*

* 1 < new_channel < 40

* Command format:

* Unprotected biock write
* addr field = SET_CH_CMD
* data field = channel number

- Example output string, local station number = 8, remote station = 16, new channel = 5§

* 0x10 DLE

* 0x02 STX

* 0x10 destination station

* 0x10 (DLE insertion)

* 008 source station

* 0x08 unprotected block write command

* 0x00 status

* 0x04 transaction # (Is)

* 0x00 transaction # (ms)

* 0x16 M1450 set channel command (ls)
* 0x00 M1450 set channel command (ms)
* 0x05 Isbyte of new channel number

* 0x00 msbyte of new channel number

* 0x10 DLE

* 0x03 ETX

* OxEE checksum (is)

* OxE9 checksum (ms)

*
--- * /
int set_channel_number (new_channel)

int new_channel;

{

int data_buff [32];
data_buff [0] = new_channel;

* Send the command (Qata field is 1 byte long) */
send (SET_CH_CMD, 0, ‘W', 1, data_buff);

()
return (TRUE);

* clear_channel (channel)
Clears all the setpoint data for the given channel.

*

* 1 < channel < 40

* Command format:

* Unprotected block write
* addr field = CLR_CH_CMD
* data field = channel to be cleared

* Example output string, local station number = 8, remote station = 16, channel = 3

* 0x10 DLE

* 0x02 STX

* 0x10 destination station

* 0x10 (DLE insertion)

* 0x08 source station

* 0x08 unprotected block write command

* 0x00 status

* 0x05 transaction # (Is)

* 0x00 transaction # (ms)

* Oox12 M1450 clear channel command (is)
* 0x00 M1450 clear channel command (ms)
™ 0x03 Isbyte of channel number

* 0x00 msbyte of channel number

* 0x10 DLE

* 0x03 ETX

* OxEF checksum (is)

* OxE8 checksum (ms)

*t*t**ttt'tttt"***tt'*t'*t*itttt*t"'*itti***tt'ttt"t!*tttt"Qttttt'ttﬁt**/

int clear_channel (channel)
int channel;
{

int data_buff [32];
data_buff [0] = channel;
/* Send the command (data field is 1 byte long) */

send (CLR_CH_CMD, 0, 'w", 1, data_buff);
™ ();
retum (TRUE);

}

,t*titttttt*'*t't*'*t*ﬁttlﬁt't'*'*'*t*tﬁttt"*"t*'t*ﬁtittt*tttttitttt*tttil’*t

*

* read_channel_setpoints (count)

* Reads ‘count’ setpoints from the currently selected
* channel.

* 1 < count < 20

* Command format:

* Unprotected block read
* addr field = READ_CH_CMD
* data field = number of setpoints to be retumed

* Example output string, local station number = 8, remote station = 16, 8 setpoints

* 0x10 DLE
* 0x02 STX
* 0x10 destination station

* 0x10 (DLE insertion)

* 0x08 source station

* 0x01 unprotected block read command

* 0x00 status

* 0x06 transaction # (Is)

* 0x00 transaction # (ms)

* 0x58 M1450 read setpoints command (is)
* 0x00 M1450 read setpoints command (ms)
* 0x10 number of bytes to be read

* 0x10 (DLE insertion)

* ox10 DLE

* 0x03 T ETX

* OxF9 checksum (is)

* OxSE checksum (ms)

®*

ti"*i't'titti'tittit't"tii"tti'i'ttit.'t**tt't'tttt*ttt*tt*.tttttttttﬁt'/

int read_channel_setpoints (count)
int count;
{

char status;

int i, num_spts, data_buff [32];

[* Convert number of setpoints to number of bytes */
data_buff [0] = num_spts = count * 2;

* Send the command (data field is 1 byte long) */

send (RD_CH_CMD, 0, 'r’, 1, data_buff);

i (x 0) {
next (); [* fetch destination */
next (); /* fetch source */ .
next (); [* fetch command */ '
status = next (); * check status */
if (status) {
puts ("Reply STATUS = Error”);
return (FALSE);
}
next (); * fetch tns low */
next (); /* fetch tns high */

for (i = 0;1 num_spts /2; i+ +) {
setpoints [i] = next ()
setpoints [i] | = (next (< 8);
}

}
. retumn (TRUE);

}

/'"i'Qt*ttt*tt""*t*ﬁttt'ttt'tﬁt*t'tt*t"ttttﬁ’ttﬁit'*'tttttttt*!t'ttt'ttti
*

* set_channel_setpoints (channel, setpoints,

* num_setpoints)

* Programs new setpoints for the given channel.

* 1 < channel < 40
* 0 < setpoint < scale_factor

* Command format:

* Unprotected block write
* addr field = CLR_CH_CMD
* data field = channel #, setpoint, setpoint, ...

* Example output string, local station number = 8, remote station = 16,
* channel 4,0 - 45, 45 - 90, 90 - 180

* 0x10 DLE

* 0x02 STX

* 0x10 destination station

* 0x10 (DLE insertion)

* 0x08 source station

* 0x08 unprotected block write command
* 0x00 status

* 0x07 transaction # (Is)

* 0x00 transaction # (ms)

* Ox5A M1450 read motion limits command (is)
. 0x00 M1450 read motion limits command (ms)
* 0x04 Isbyte of channel number

* 0x00 msbyte of channel number

* 0x00 isbyte of setpoint

* 0x00 msbyte of setpoint

* 0x45 Isbyte of setpoint

* 0x00 msbyte of setpoint

* 0x45 Isbyte of setpoint

* 0x00 msbyte of setpoint

* 0x90 Isbyte of setpoint

* 0x00 msbyte of setpoint

* 0xS0 Isbyte of setpoint

* 0x00 msbyte of setpoint

* 0x80 Isbyte of setpoint

* 0x01 msbyte of setpoint

* 0x10 DLE

* 0x03 ETX

* 0x3C checksum (1s)

41

- 0xDS checksum (ms)

* ttit**Q"t"f"""""""tﬁ"ttt.t.i't'it""'t"t"tﬁttti'tfQtitt!ti"ttl"t/

int set_channel_setpoints (channel, setpoints, num_setpoints)
int channel, *setpoints, num_setpoints;
{

int i, data_buff [32],
data_buff [0] = channel;
for (i = 0;i num_setpoints; i+ +)

data_buff [i + 1] = *setpoints + +;

send (WR_CH_CMD, 0, 'w', i + 1, data_buf);

0

return (TRUE);
}
,- -- ®%
* download ()

- Download a fixed command set

* Command format:

* Unprotected block write

* addr field = DOWN_CMD

* data field = command list

* (see DOWNLOAD section of M1450 serial manual
* for valid commands) .

* Example output string, local station number = 8, remote station = 16

* 0x10 DLE .
* 0x02 STX

* 0x10 destination station

* 0x10 (DLE insertion)

* 0x08 source station ,

* 0ox08 unprotected block write command

* 0x00 status

* 0x0A transaction # (Is)

* 0x00 transaction # (ms)

* Ox4A M1450 download limits command (is)
* 0x00 M1450 downioad command (ms)

. ‘

* 0x02 Isbyte of byte count/offset command
* 0x00 msbyte of byte count

* 0x12 Isbyte of command

* 0x00 msbyte of command

0x20
0x00

0x05
0x00
0x65
0x00
0x00
0x00
0x05
0x00
0x01
0x00
0x34
0x02

0x04
0x00
0x56

0x01
0x00
0x00
0x00
0x10
0x10
0x00

0x00
0x56

0x02
0x00
Oox10
0x10

0x20
0x00

0x04
0x00

0x00
0x03

Isbyte of data
msbyte of data

Isbyte of byte count/set motion limits command
msbyte of byte count
Isbyte of command
msbyte of command
Isbyte of data
msbyte of data
Isbyte of data
msbyte of data
isbyte of data
msbyte of data
isbyte of data
msbyte of data

isbyte of byte count/program channel
msbyte of byte count

Isbyte of command

msbyte of command

isbyte of data (channel number)
msbyte of data

Isbyte of data (setpoint)

msbyte of data

Isbyte of data (setpoint)

(DLE insertion)

msbyte of data

Isbyte of byte count/program channe!
msbyte of byte count

isbyte of command

msbyte of command

isbyte of data (channel number)
msbyte of data

Isbyte of data (setpoint)

(DLE insertion)

msbyte of data

isbyte of data (setpoint)

msbyte of data

isbyte of byte count/program channel command
msbyte of byte count

isbyte of command

msbyte of command

Isbyte of data (channe! number)

msbyte of data

Isbyte of data (setpoint)

0x00 msbyte of data
0x30 Isbyte of data (setpoint)
0x00 msbyte of data

ox10 DLE
0x03 ETX

* *t'tt*t*'tt*t't"*!itt'*’*'**tt'ti'tttt.'ﬁi""**'iﬁtt'ttttlttitttftt't'tt/

int download ()

{
int data_buff [32];

I* set offset command */

data_buff [0] = 2;
data_buff [1] = 12;
data_buff [2] = 20;

/* set motion limits */

data_buff [3] = 5;
data_buff [4] = 65;
data_butf [S] = 00;
data_buff [6] = 05;
data_buff [7] = 1;
data_buff [8] = 234;

/* program channel 1 */

data_buff [9] = 4;
data_buff [10] = 56;
data_buff [11] = 1;
data_buff [12] = 0;
data_buff [13] = 10:

/* program channel 2 */

data_buff [14] = 4;
data_buff [15] = 56;
data_buff [16] = 2;
data buff [17] = 10;
. data_buff [18] = 20;

/* program channel 3 */

data_buff [19] = 4;
data_buff [20] = 56;
data_buff [21] = 3;

/* byte count */
I* download offset command */
/* new offset data = 20 */

/* byte count */
I* download motion limits command */
I* new motion low value = 0005 */

I* new motion high value = 1234 */

* byte count */

I* download setpoints command */
I* channel number */

/* on setpoint = 0 */

/* off setpoint = 10 */

[* byte count */

/* download setpoints command */
I* channel number */

/* on setpoint = 10 */

I* off setpoint = 20 */

I* byte count */
/* download setpoints command */
/* channel number */

data_buff [22] = 20; /* on setpoint = 20 */
data_buff [23] = 30; I* off setpoint = 30 */

send (DOWN_CMD, 0, 'w', 24, data_buff);
x ();
return (TRUE);

}

,'ttﬁt*titt*t"'tt"ﬁ'iit"ttitttttf’t.t.""tt'*'t‘ttt'tt'ttt'ii'i**tt**tt't"i
*

* send (command, status, r/w, count, buffer)
* Forms the transmit string & then outputs it to the UART.

* command

* status

* riwflag (for unprot. block read/write)
* length of the data field

* address of the data buffer

* Outputs:

* DLE, STX, DST, SRC, UNPROT BLK R/W CMD, STS,
* TNS(word), command(word), data..., DLE, ETX, CRC(word).

® *ttt'ttttttﬁ't'tt*tttt'*ttt*titttt*tt'tt"*.*t"*'tt*t’t**tt'**"itﬁtQ't"i/

void send (cmd, sts, rw, count, buffer)
char cmd, sts, rw;
int count, *buffer;

{
char *tx_ptr, *put();
int cmd_len, i, number, tens, huns;
unsigned get_crc();

/* Reset variables */
dsply_ofs = input_ofs = 0;
tx_crc = 0;
tx_ptr = tx_buffer;

/* All messages start with DLE/STX */
*tx_ptr+ + = DLE;
*x_ptr+ + = STX;
cmd_len = 2;

I* Insert the destination & source station numbers */

D_ptr = put (bx_ptr, dest_station, &cmd_len);
tx_ptr = put (tx_ptr, src_station, &cmd_len);

/* Insert the command type (read or write) */
f(w=="1)
tx_ptr = put (tx_ptr, UNPROT_BLK_RD_CMD, &cmd_len);
else
tx_ptr = put (tx_ptr, UNPROT_BLK_WR_CMD, &cmd_len);
/* Insert the status */
t_ptr = put (bx_ptr, sts, &cmd_len);

/* Insert the current transaction number (Is : ms} */

tx_ptr = put (tx_ptr, trans & 0xff, &cmd_len);
tx_ptr = put (tx_ptr, trans > 8, &cmd_len);

/* Copy the command to the address field (is:ms) */

tx_ptr = put (tx_ptr, cmd, &cmd_len);
tx_ptr = put (tx_ptr, 0, &cmd_len);

/* If this is a read command, insert the number of bytes to be read. If this is a write com-
mand, insert the data. */

#(w=="r)

tx_ptr = put (tx_ptr, *buffer + +, &cmd_len);
else {

while (count) {

/* Convert binary to BCD/hex! Note that the largest A-B ‘word' is 999 */

number = *buffer;
tens = (number % 100/ 10) * 16 + number % 100 % 10;
huns = number/ 100;

/* Insert data into tx string */

tx_ptr = put (tx_ptr, tens, &cmd_len);
tx_ptr = put (tx_ptr, huns, &md_len);
count—,

buffer+ +;

/* End of data, append DLE/ETX and the CRC */
*tx_ptr+ + = DLE;
*x_ptr+ + = ETX;
tx_crc = get_crc (ETX, tx_crc),
*tx_ptr+ + = tx_crc & Oxff;
*tx_ptr = tx_crc > 8;
cmd_len + = 4;
trans+ +;

/* transmit the message */
for (i = 0;i cmd_len; i+ +)

tx_char (tx_buffer[i]);
return;

* put (destination, data, length)

+ Inserts data into the destination string. The CRC is updated. If the data = = DLE,
* an extra DLE is inserted. The length of the string is also updated, and the new

* pointer is returned.

char *put (ptr, data, len)
char *ptr, data, *len;
{

unsigned get_crc ();

*ptr+ + = data;
(*len) + +;
tx_crc = get_crc (data, tx_crc);

/* Note DLE insertion (extra DLE is NOT part of the CRC) */
if (data = = DLE)

*ptr+ + = DLE, (*len) + +;
return (ptr);

* get_crc (new_data, current_crc)
*

* Coniputes and returns a new CRC.

*

* new_data = new byte to be added to the CRC
* current_crc = current CRC value

*

tittit.tttt'iti't*t'ti't**'*ﬁt"tt"t*"""it'*t"it'tttfittt*ﬁtttttt*titﬁ/

unsigned get_crc (new_data, current_crc)

char new_data;
unsigned current_crc;
{

int i

current_crc ~ = new_data;

for(i=0;18i++){
if (current_crc & 1)
current_crc = (current_crc > 1) ~ 0xa001;
else
current_crc = current_crc > 1;

retumn (current_crc);
,Q'tt'tﬁttttt'tt.tttt"*tttttt"'.'t*'i.t'i.ttttttﬁtﬁ'*tttt't'it*ttt't*‘ﬁttt.
*
*RX ()
* Collects the received data. It will monitor data until the end of a valid message
* occurs.
*

tt"t't"'*tttt't"*ttt"*t""*'i*.'&ttt"ﬁ*t"Q.'Qﬁ.'*tt'.***t*t"'ttt".ttl

char rx ()

{ :
char rx_char, dle_etx, dle_stx, crc_seq, dle_flag, eom_flag;
int crc_hi, crc_lo, n_crc;

unsigned get_crc ();

/* Reset all flags and the CRC */

eom _flag = dle_flag = dle_etx = dle_stx = crc_seq = FALSE;
x_crc = 0;

/* Fetch data from the receive buffer until it is empty */

while (dsply_ofs ! = input_ofs) {
rx_char = rx_buffer [dsply_ofs];

/* If a DLE/ETX sequence has been found, we're at the end of the message. Verity the
CRC. If the CRCs don't match, ring the bell, otherwise return a DLE/ACK to the sender. */

if (die_etx) {
if (crc_seq) {
crc_hi = rx_char,
rx_crc = (crc_hi < 8) | crc_lo;
i (x_crc ! = calc_rx_crc)
putchar (\7');
crc_seq = dle_etx = dle_stx = FALSE;
eom_fiag = TRUE;
tx_char (DLE), tx_char (ACK);
}
else
crc_lo = rx_char, crc_seq = TRUE;
}
switch (rx_char) {

/" DLE received. Check for DLE/DLE sequence. */

case DLE:
if (die_flag) {
die_flag = FALSE;

/* 1f DLE/DLE occurs after message start, put just 1 DLE in the rx butfer */

if (dle_stx) {
n_len+ +;
calc_nx_crc = get_crc (rx_char, calc_rx_crc); } }else
die_fiag = TRUE;

break;

/* ETX received. If DLE was just received, then we're at the end of the message. */
case ETX:
/* If ETX occurs within message, add it to the message buffer */

if (die_stx) {
calc_mx_crc = get_crc (nx_char, calc_mx_crc);
n_len+ +;
}
it (dle_flag) {
dle_etx = TRUE;
die_flag = dle_stx = FALSE;
}

break;

49

/* STX received. If DLE was just received, then we're at the start of a message */

case STX:

if (dle_flag) {
dle_stx = TRUE;
dle_flag = FALSE;
msg_ofs = dsply_ofs;
calc_rx_crc = rx_len = 0;

}

else if (dle_stx) {
~x_len+ +;
calc_rx_crc = get_crc (x_char, calc_rx_crc); } break;

/* If DLE/NAK receive, an error has occurred, ring the bell */

case NAK:
if (die_flag) {
putchar (\7’);
eom_flag = NAK;
}
else if (die_sbq) {
rx_len+ +;
calc_rx_crc = get_crc (rx_char, calc_rx_crc);
}
break;

/* Any other chars received after start of message are inserted into the message buffer */

default:
die_flag = FALSE;
if (dle_stx) {
~_len+ +;
calc_rx_crc = get_crc (rx_char, calc_rx_crc);
}
break;
}
dsply_ofs = + +dsply_ofs % 256;
if (eom_flag)
break;

}

return (eom_flag);

}

,ﬁQ“'t*t'.t'ttttt'Qt"'.tttiQ.t'it..ﬁt.ﬁtttt.tt"tt*tt""*'f.it"t'."ﬁ*ﬁ**tttt :

* NEXT () parses the rx buffer. it skips all DLE DLE sequences and returns the next
* char from the buffer.

'i't""t*t'*ﬁttﬁtﬁifi"t'tt't’ttitiif!t/

int next ()

char data;

/* if the next char is DLE, skip 1 byte since each DLE in the data field is automatically fol-
lowed by a second DLE */

if (x_buffer [msg_ofs] = = DLE)
msg_ofs = (msg_ofs + 1) % 256,

data = rx_buffer [msg_ofs];

msg_ofs = (msg_ofs + 1) % 256;

return (data);

51

