

M7251 Die Protect Programmable Limit Switch (DPPLS) Function Module

Instruction & Operation Manual

Sales and Marketing ▼ 343 St. Paul Blvd. Carol Stream, IL 60188 Tel: (630)668-3900 FAX: (630)668-4676

Factory Customer Service/Order Entry •

4140 Utica Ridge Rd. Bettendorf, IA 52722 Tel: (319)359-7501 (800)711-5109 FAX: (319)359-9094

Application Hotline 1 (800) TEC-ENGR (832-3647)

Vist our web site at: www.avg.net

Contents

1.	Introduction to the M7251 DPPLS Module 1
2.	Specifications 1 2.1 Discrete (hard-wired) Outputs/Inputs Operation 2
	2.2 I/O Electrical Specifications
3.	Wiring33.1Wiring Pinout Tables33.2Resolver Wiring53.3I/O Module Wiring/Pinout Table6
4.	M7251 DPPLS Module Functions 7 4.1 DEFINITIONS 7 Tool 7 Channels 7 4.2 USER DEFINED PARAMETERS 7
	Global Parameters
	4.3 Inputs and Outputs94.4 Broken Wire Detector94.5 Built-In Tachometer and Motion Detector9
	4.6 BRAKE 9 Motion Detect Delay Time 9 Brake Stopping Time 9 Brake Wear Monitor Time Limits 9
	4.7 Press Height 10 4.8 Fine Tune 10 4.0 Outputs (0.16) 11
	4.9 Outputs (9-16) 11 4.10 Die From/To Setpoints 11 4.11 Input Types 11 Rise and Fall 11 Pulse 11 All High/Low 11 Dosition High/Low 11 Disable1 11
	4.12 Sensor Name Programming 11 1. Read from Name Pool (Bit b0) 11 2. Read Sensor Name (Bit b1) 11 3. Assign (Bit b2) 11 4. Find (Bit b3) 11 5. Find Next (Bit b4) 12 6. Rename (Bit b5) 12 List of Predefined Names (Index #1-22) in the 12
	4.13 Tool Names 12 DUAL PORT RAM REGISTERS 12 1. FIND (Bit b0) 12 2. FIND NEXT (Bit b1) 12 3. SELECT (Bit b2) 12

	 4. COPY (Bit b3) 5. RENAME (Bit b4) 6. DELETE (Bit b5) 7. READ (Bit b6) 4.14 Leading and Trailing Edge Speed Compensation 4.15 Password Levels 	12 12 12 12 13 14
5.	DPPLS Module Addresses I/O Status (16 Bit Read Only	15 15 16 16 16 17 17 17 18 18 18 19 19 20 20
6.	Memory Map for DPPLS Module	21
7.	Processor Programming	27
8.	TroubleshootingTable	27
9.	How to Order	28
	Warranty CAUTION	29 29

APPENDIX A

1. Introduction to the M7251 DPPLS Module _____

The M7251 Die Protect Programmable Limit Switch (DPPLS) Function Module is an intelligent, resolver based, 10-bit, absolute position module. It is a member of Autotech Controls' CBus family of products. This function module can be used in any of the CBusModules to interface to PLCs and AVG's PowerPanel.

The M7251 DPPLS module communicates with the programmable controller through input and output registers. Input registers give you access to the 13 die protect sensor inputs, the brake wear monitor input, brake clear, 4 counter (batch, quality, tool, total) reset inputs, 2 passwords, and the die protect fault reset. The output registers allow you to program the module's parameters from the programmable controller.

The M7251 DPPLS module communicates with AVG's multifunction PowerPanel through 2048 16-bit registers.

These registers can be user mapped to monitor and configure the DPPLS functions. AVG's *u*WIN software allows the user to interface the data from the module into user defined graphic screens.

The M7251 DPPLS outputs and inputs are dependent upon the type of cradle used. The discrete outputs can be interfaced directly to external devices while the virtual outputs are mapped to internal registers. The M7251 DPPLS module has 112 ON/OFF setpoints per program and the ability to store 41 user-defined programs (setups/ tools). The module offers 16 PLS Outputs, Emergency Stop, Top Stop, Fault Detection, Broken Wire Detection, Danger, and Motion Detection.

2. Specifications _____

Position Resolution: 1 part in 360
Update Time: 3 msec
Programmable Parameters: Position Offset Motion Detect Delay Time (9.99 sec. max) Counter Presets (Batch & Quality) End of Stroke Angle (200–359) * Engagement Angle (0–189) From/To Setpoints (Die Protect) On/Off Setpoints (PLS) Setups (Tools) Speed Compensation Motion Limits: High & Lo (RPM) Brake-wear Monitor Limits: Danger (9.99 sec. max) Sensor Type Sensor Fault Type
Scale Factor: Scale factor is a fixed 359
Position Offset: Programmable to 359 full scale factor value, common to all DPPLS setups (tools)

Number of PLS On/Off Setpoints:

112 per DPPLS setup (tool) (16 outputs) 7 dwells per channel — angle-on/angle-off or 1 dwell angle-on/time-off

Speed Compensation:

Programmable in units per 100 RPM, up to full value. Each DPPLS output (channel) has its own leading and trailing speed compensation. Trailing edge speed compensation not available for angleon/time-off dwells.

Motion Detector:

Low and High motion limits, common to all PLS setups(tools), programmable from 0–999 RPM

Brake-wear Monitor:

Danger Limit, Stopping time 9.99 sec. max.

Number of PLS Outputs:

16 total — 16 discrete

Brake Input:

Used with motion and stopping time

Broken Resolver Wire Detection:

Indication for broken wire in I/O Status

* Angle in degrees where the process Counters (Batch, Quality, Tool, Total) are incremented or decremented (dependent upon Counter type).

2.1 Discrete (hard-wired) Outputs/Inputs Operation

T-Stop *

- On = no fault present
- Off = fault present
- Die T-Stop, batch, quality or broken wire

E-Stop

- On = no fault present
- Off = fault present
- Die E-Stop, brake danger, motion, broken wire

PLS Outputs

- On = if current position is within the dwell (ON/OFF setpoint)
- Off = if current position is outside the dwell (ON/OFF setpoint)

PE (Program Enable) Input

- On = Programming Enabled (input present)
- Off = Programming Disabled (input not present)

Brake Input

On = Input not present (Run Mode) Off = Input present (Brake Mode)

Brake Clear Input

After the "stop" signal , the Brake Stop Timer begins counting. You may clear the brake timer by asserting the Brake Clear Input.

Note: The timer for the Stopping Time monitoring will start when the Brake input goes from the ON (Run Mode) to OFF (Brake Mode) state.

Sensor Inputs:

Each bit defines a different type of input sensor. Up to 13 die sensors may be programmed to the following input types: Rise, Fall, Pulse, Position High, Position Low, All High, All Low.

* The output is generated at the position the fault occurs. The machine control circuitry must handle stopping the machine at the correct position.

2.2 I/O Electrical Specifications

Customer supplied 24V power Vs+, Vs-: 20 to 30VDC @ 100 mA + current used by user's loads and inputs.

N-Channel Sinking Output (see figure 1)

OUTPUT LOGIC LEVELS:

Logic True: MOSFET On, 0.2V Max @ 100 mA Logic False: MOSFET Off, 0.05 mA leakage @ 30V Max. Current per Output: 600 mA Max. Current per Card: 2 Amps Output Isolation: 1500V

INPUT LOGIC LEVELS:

Logic True: 10–30 VDC Logic False: 0–1.5 VDC Input Isolation: 1500 V

Figure 1. N-Channel Output

P-Channel Sourcing Output (see figure 2)

OUTPUT LOGIC LEVELS: Logic True: MOSFET On, 0.5V Drop @ 100 mA Logic False: MOSFET Off, 0.05 mA leakage @ 30V Max. Current per Output: 600 mA Max. Current per Card: 2 Amps Output Isolation: 1500V

INPUT LOGIC LEVELS (P-Input Sourcing): Logic True: 10–30 VDC Logic False: 0–1.5 VDC Input Isolation: 1500 V

Figure 2. P-Channel Output and P-Channel Input

3. Wiring

3.1 Wiring Pinout Tables

Because the M7251 DPPLS can be plugged into a variety of Function Module Interfaces (for various PLCs and PowerPanels) the pinout cannot be specified in this manual.

Instead, table 1(next page) reflects the functional inputs and outputs that the DPPLS provides to CBus signal numbers. To determine which terminal on the Function Module Interface corresponds to a given function in the DPPLS:

- a. Read the CBus Signal number from the table in this manual for that function.
- b. Look up that number in the table provided in the applicable Function Module Interface Manual. That table will list the terminal pinout of the Function Module Interface vs the CBus Signal numbers.

To make this comparison even easier, the tables for Function Modules and Function Module Interfaces are published in the same size and order. This allows you to simply place them side by side and match up function and pinout at a glance.

Table 1 defines wiring for all applications in all cradles except MF2 PowerPanel Slot 2. For MF2 PowerPanel Slot 2, the signals noted with an asterisk (*) in the table are connected through the cradle D-connectors, just like slot 1. All other signals are on the I/O module's 37-pin connector, see table 2 (next page).

The pinout chart for ASY-M7250-NN11 and ASY-M7250-NN19 I/O Modules is provided in table 2. (Both of these I/O Modules are for use in the MF2 cradle slot #2 only.)

Instruction Manual

Table 1CBUS Signal Number to DPPLS Function

CBus Signal Number	M7251 DPPLS Function		
1	R1 *		
2	R2 *		
3	S3 Resolver *		
4	S2 Resolver *		
5	S1 Resolver *		
6	S4 Resolver *		
7	Channel 7 Output		
8	Channel 8 Output		
9	NC		
10	NC		
11	Vs- (customer supplied power return) *		
12	Vs+ (customer supplied power) *		
13	Channel 1 Output		
14	Channel 2 Output		
15	Channel 3 Output		
16	Channel 4 Output		
17	Channel 5 Output		
18	Channel 6 Output		
19	T-Stop		
20	E-Stop		
21	Program Enable (PE Input)		
22	Brake Input		
23	Brake Clear		
24	Die Protect Input 1		
25	Die Protect Input 2		
26	Die Protect Input 3		
27	Die Protect Input 4		
28	Die Protect Input 5		
29	NC		
30	NC		
31	NC		
32	NC		

Table 2I/O Module to DPPLS Function

37P in D-Sub Connector Pin #	Function		
1	VS-		
2	Output 2		
3	Output 4		
4	Output 6		
5	E-Stop		
6	Output 8		
7	Output 10*		
8	Output 12*		
9	Output 14*		
10	Output 16*		
11	Output not used *		
12	Input 10*		
13	Input 8		
14	Input 6		
15	Input 4		
16	Input 2		
17	Brake Clear		
18	Program Enable (PE)		
19	VS+		
20	Output 1		
21	Output 3		
22	Output 5		
23	T-Stop		
24	Output 7		
25	Output 9		
26	Output 11*		
27	Output 13*		
28	Output 15*		
29	Input 13*		
30	Input 12*		
31	Input 11*		
32	Input 9*		
33	Input 7		
34	Input 5		
35	Input 3		
36	Input 1		
37	Brake Input		

* NC for -N11 I/O module

3.2 Resolver Wiring

See your Function Module Interface manual for translation of CBus signal numbers to connector pins.

Table 3. Resolver Wiring

Wiring Table for Single-turn Resolvers E6R-RL101, E7R-RL101, SAC-RL100, E8R-RL101					
CBUS Signal	CBL-10T22-xxxx Wire Color	Function	Resolvers with terminals		Resolvers with MS Connectiors
Number			SAC-RL100-010	SAC-RL100-Gxxx	Pin #
1 2	Black/Green Green	Rotor R1 Rotor R2	R1 (RL) R2 (RH)	1 2	F
3 5	Black/Yellow Yellow	S1 Stator S3 Stator	S1 S3	3 5	D C
4 6	Black/Blue Blue	S2 Stator S4 Stator	S2 S4	4 6	B A
	Shield	Case Ground	GND (Green Screw)	GND (Green Screw)	G
	Notes: 1. Black/Green indicates a black wire with green stripes. 2. An overall foil shielded cable with twisted pairs, (such as Autotech's cable CBL-10T22-xxxx) mus			-10T22-xxxx) must	

be used for wiring the unit. The pairs must be formed as follows: S1 & S3, S2 & S4, R1 & R2) 3. MS Connector: MS3112E-12-10P; Mating Connector: MS3116F-12-10S (Autotech Part Number ECM-10REC-ITT).

MS Connector is not available with E8R series.

Terminal Block

3.3 I/O Module Wiring/Pinout Table

There are several I/O module types available for use with the M7251 DPPLS. Some are for use only with the MF2 (multi-function 2 or "dual") cradle. For more information about the type and placement of an I/O module in a particular cradle, see table 4. Use table 5 to determine the amount of real I/O the particular module provides. Table 5 defines the numbers of input, output, Die Protect Input and PLS outputs available for each I/O Module Type.

I/O Module Type	MF PowerPanel	MF2 PowerPanel
ASY-M7250-NN10	YES	SLOT 1
ASY-M7250-NN11	NO	SLOT 2
ASY-M7250-NN19	NO	SLOT 2
ASY-M7250-NP10	YES	SLOT 1
ASY-M7250-N120	YES	SLOT 1

Table 5.	
----------	--

I/O Module Type	Total Inputs	Total Outputs	DP Inputs	PLS Outputs
ASY-M7250-NN10	8	10	5	8
ASY-M7250-NN11	11	10	8	8
ASY-M7250-NN19	16	19	13	16
ASY-M7250-NP10	8	10	5	8
ASY-M7250-N120	6	8	3	6

4. M7251 DPPLS Module Functions

(Note: Function Addresses are available in Section 5.)

4.1 DEFINITIONS

This section defines commonly used terms associated with the M7251 DPPLS Module programming instructions.

Tool

There are 41 distinct tools that may be pre-programmed into the M7251 DPPLS. These tools are identified by a Tool Number from 1 to 41.

Channels

There are 16 possible PLS Output Channels depending upon the type of I/O module used with your application. For more information, see Section 3.3, *I/O Module Wiring*, for further information.

Note: The first outputs are brought out through the I/O module to real output points. All 16 outputs can be accessed in the memory map.

There are 16 independent output channels, each of which contains its own setpoints to turn the output on or off at different shaft angles. Channels 1–16 also contain their own speed compensation factor so that propagation delays from output to process may be compensated.

4.2 USER DEFINED PARAMETERS

The M7251 DPPLS module has either Global or Program Specific Parameters.

Global Parameters are common to all programs. Table 6 summarizes global parameters.

Program Specific Parameters are identified with a given program number. These user defined parameters may change with program selection. Table 7 summarizes program specific parameters.

Parameter	Definition	Range
Base Offset	Counts to be added to resolver position. It is used to align resolver zero to machine zero.	0 to Scale Factor Default: 0
Motion Limits, High & Low	Motion output energizes if resolver moves within these limits.	0 to 999
Danger Limits	Danger limits for brake wear monitoring control output 8.	0 to 9.99 sec Default: 0
Votion Detect Delay Time Time to not detect low motion when brake input goes away.		0 to 9.99 sec
Engagement Angle	ent Angle Angle to 190 not to turn off E-Stop if fault.	
Top Stop Angle	Angle to turn OFF T-Stop if fault.	200-359
Total Counter	Strokes from last reset.	0 to 4,294,967, 295
Program Number Setup or Program number.		1 to 41 Default: 1

Table 6. Global Parameters

Table 7. Tool Specific Parameters

Parameter	Definition	Range	
Channel Type	Programmable Angle On/Time Off orAngle On/Angle Off.	N/A	
Speed Compensation	A constant number in degrees to advance setpoints (dwells) based on resolver speed. Programmed in degrees per 100 RPMLeading and Trailing Edge available for Angle ON/Angle OFF, Leading Edge only for Angle ON/Time OFF.	0 to 359 Default: 0 Programmed for each channel separately.	
Setpoint, ON & OFF up to as many as 16 channels, as required	The associated output is energized at ON setpoint, and de-energized at OFF setpoint or TIme-OFF.	0 to 359 Multiple dwells possible in a channel (up to 7 dwells for angle-on/angle-off or 1 dwell for angle-on/time- off) Default: 0	
Die From/To Window	Window during which a die input is tested.	0 to Scale Factor	
Sensor Input Type	Programmable rise, fall, pulse, position high, position low, all high, all low	N/A	
Sensor Fault Type	Programmable E-Stop, T-Stop	N/A	
Batch Counter Preset	Preset value that batch counter will count down from	10 digit value, 0-4,294,967,295	
Batch Counter	Number of revolutions that remain before the preset number of revolutions have been completed with the current tool since the counter has been reset to the preset value.	10 digit value, 0-4,294,967,295	
Quality Counter Preset	The preset value that quality counter will count down from.	10 digit value, 0-4,294,967,295	
Quality Counter	Number of revolutions that remain before the preset number of revolutions have been completed with the current tool since the counter has been reset to the preset value.	10 digit value, 0-4,294,967,295	
Tool Name	Eight character description of tool.	0-8 ASCII characters (maximum of 41 tool names)	
Tool Counter	Number of revolutions that have been completed with the current tool since the counter has been reset (counts up from zero.)	10 digit value, 0-4,294,967,295	
Input Sensor Name	16 character description of Sensor Name	0-16 ASCII characters (maximum of 13 input sensor names per tool)	

4.3 Inputs and Outputs

The M7251 DPPLS utilizes a separate I/O module for input and output functions allowing the user to select either sourcing or sinking drivers. See section 3.3, *I/O Module Wiring*, for more information.

Inputs

- 13 die protect sensor inputs, 1 brake input, 1 brake clear, 1 program enable
- Internal inputs— 4 counter (batch, quality, tool, total) reset inputs, 2 passwords, 1 die protect fault reset, 1 brake clear, 1 die protect disable, inch mode, 1 batch disable, 1 quality disable

Outputs

- 16 PLS outputs, emergency stop, top stop
- Internal outputs fault, broken wire, motion detector

4.4 Broken Wire Detector

The Broken Wire I/O Status Bit is energized when the M7251 DPPLS is operating normally and the resolver wiring is intact. If one or more of the resolver wires are broken or disconnected, the PLS outputs, and the E-Stop and T-Stop outputs will de-energize.

4.5 Built-In Tachometer and Motion Detector

The built-in tachometer and motion detector are updated over 68 times per second to provide fast, accurate indication and detection of rotary motion. The motion detector is programmed to energize an output when the machine's RPM is between the motion low and high limits.

4.6 BRAKE (*Reference figure 3 and table 8*)

Motion Detect Delay Time (with respect to brake)

The M7251 DPPLS provides detection and warning of resolver movement below the LOW MOTION LIMIT — 0 to 9.99 seconds.

Under normal operating conditions (brake not engaged), motion will de-energize when the RPMs fall below the motion low limit. To allow the press to start up again, the motion detection must be delayed while the press is starting. When the brake input switches from Stop to Run, the motion timer begins timing.

- If the press reaches RPM in between the motion high and motion low (before the motion time delay times out), the motion output will remain energized.
- If the RPM does not fall between motion high and motion low limits (before the motion timer times out), the motion output will de-energize.

Note: A motion fault generates an E-Stop.

Note: Low Motion Limit must be non-zero to detect Low Motion Fault

Brake Stopping Time

Stopping time is the amount of time it takes for a shaft to stop turning after the brakes are applied (0–9.99 seconds). If the shaft is turning and the brakes are applied, the "stop" signal may be wired into the Brake Input Terminal on the unit. Upon receiving this "stop" signal, the Brake Stop Timer begins counting. When stopped, the brake timer may be cleared by asserting the Brake Clear Input.

Figure 3	Brake	Stonning	Time	and No	Motion	Detect
rigure J.	DIUNE	Stopping	1 11116	<i>unu</i> 110	monon	Detect

Brake Wear Monitor Time Limits

The amount of time it takes for a shaft to stop turning after the brakes are applied may be measured and compared to Danger Time Limits. This measurement can warn of brakes that are wearing out and may need to be replaced for safety reasons.

The brake "stop" signal should be wired into Brake Input Terminal on the unit. Upon receiving this "stop" signal, the Brake Stop Timer begins counting. The Brake Danger Output (I/O Status) will be ON to reflect a "Safe" condition.

If the Shaft fails to stop before reaching the Danger Time Limit, the "Danger" output condition will appear on the Brake Danger Output (I/O Status). When stopped, the brake timer may be cleared by asserting the Brake Clear Input.

Table 8. Brake Outputs

Brake Outp	out Conditions
Condition	Brake Danger Output (I/O Status)
Safe	ON
Danger	OFF
OFF: De-energized	ON: Energized
Note: A Brake Dange	er generates an E-Stop.

4.7 Press Height

This value is the same as the position value between 0 and 180° . Between 180 and 360° , this value decreases from 180° to 0.

4.8 Fine Tune

Fine Tune the die protect windows and PLS dwells. Fine tuning in this context means the following:

- Increment a value in a location in DP RAM
- Decrement a value in a location in DP RAM
- Increment a pair of values (for retarding a dwell)
- Decrement a pair of value in two consecutive locations (for advancing a dwell)

Address of Location to be fine tuned: User puts here the address of location in Dual Port Memory map that needs to be fine tuned (set point ON or OFF address). For pair of locations (e.g., a dwell) this would be the address of first location.

Fine Tune Control Word: Bits in Control word indicates the fine tuning action — increment, decrement, etc. The function module scans the bits in the control works from right to left (from least significant to most significant bit) and acts on the first set bit it finds. Other bits, if set, will simply be ignored.

The Increment/ Decrement functions are assigned to bits in the Control Word and are as follows.

Increment On Value Once (Bit b0): When set, increment value in addressed location by 1. Function module will clear the bit after one increment. The PLC does not have to clear this bit explicitly to stop increment operation; but the PLC must toggle the bit to continuously increase the value.

Decrement On Value Once (Bit b1): When set, decrement value in addressed location by 1. Function module will clear the bit after one decrement. The PLC does not have to clear this bit explicitly to stop decrement operation; but the PLC must toggle the bit to continuously decrease the value.

Increment On/Off Values Once (Bit b2): When set, increment pair of values by 1 (address of first location in command.) Function module will clear the bit after one increment. The PLC does not have to clear this bit explicitly to stop increment operation; but the PLC must toggle the bit to continuously increase the values.

Decrement On/Off Value Once (Bit b3): When set, decrement pair of values by 1 (address of first location in command). Function module will clear the bit after one decrement. The PLC does not have to clear this bit explicitly to stop decrement operation; but the PLC must toggle the bit to continuously decrease the values. **Increment On Value Continuously (Bit b4):** When set, increment value in addressed location continuously, as long as the bit is set. Function module does not clear this bit. The module will continue to increment the value as long as the bit is set. PLC must explicitly clear this bit to stop incrementing operation.

Decrement On Value Continuously (Bit b5): When set, decrement value in addressed location continuously, as long as the bit is set. Function module does not clear this bit. The module will continue to decrement the value as long as the bit is set. PLC must explicitly clear this bit to stop decrementing operation.

Increment On/Off Value Continuously (Bit b6): When set, increment pair of values continuously (address of first location in command) as long as the Bit is set. Function module does not clear this bit. The module will keep on incrementing the values as long as the bit is set. PLC must explicitly clear this bit to stop incrementing operation.

Decrement On/Off Value Continuously (Bit b7): When set, decrement pair of values by 1 (address of first location in command), as long as the bit is set. Function module does not clear this bit. The module will keep on decrementing the values as long as the bit is set. PLC must explicitly clear this bit to stop decrementing operation.

Increment Off Value Once (Bit b8): When set, increment value in addressed location by 1. Function module will clear the bit after one increment. The PLC does not have to clear this bit explicitly to stop increment operation; but the PLC must toggle the bit to continuously increase the value.

Decrement Off Value Once (Bit b9): When set, decrement value in addressed location by 1. Function module will clear the bit after one decrement. The PLC does not have to clear this bit explicitly to stop decrement operation; but the PLC must toggle the bit to continuously decrease the value.

Increment Off Value Continuously (Bit b10): When set, increment value in addressed location continuously, as long as the bit is set. Function module does not clear this bit. The module will continue to increment the value as long as the bit is set. PLC must explicitly clear this bit to stop incrementing operation.

Decrement Off Value Continuously (Bit b11): When set, decrement value in addressed location continuously, as long as the bit is set. Function module does not clear this bit. The module will continue to decrement the value as long as the bit is set. PLC must explicitly clear this bit to stop decrementing operation.

4.9 Outputs (9-16)

9–16 of the PLS Outputs, the same as PLS outputs (9–16) in 1–16, copied to be available for use with those cradle types that can not read all 16 from one location.

4.10 Die From/To Setpoints

Defines the windows to check input types in.

4.11 Input Types

Each input can be disabled. If an input is disabled, it is not monitored during operation of the press, and thus cannot generate any faults.

Up to three windows may be programmed per input. The input will be monitored in each and every programmed window if monitoring is enabled.

When a Die Protection Fault occurs, a T-Stop or E-Stop is initiated. Input type allows you to program what event the input will look for (Disable, Rise, Fall, Pulse, Position High/Low, All High/Low)

Rise and Fall

If the input is programmed as Rising, and the RISING EDGE of this input occurs within the programmed FROM-TO window (Input transition from OFF to ON), no fault will be generated. If no rising edge is detected within the window, fault output will be generated per T or E-Stop selection after the TO setpoint of the window is reached.

If the input is programmed as Falling, and no FALLING EDGE is detected within the window (Input transition from ON to OFF), the fault output will be generated per T- or E-Stop selection after the TO setpoint of the window is reached.

Pulse

If an input is programmed as PULSE (Input transisiton form OFF to ON and then from ON to OFF), both rising then falling edge has to be detected within the window. If either rising edge or falling edge, or both are missing, the fault output will be generated per T- or E-Stop selection.

All High/Low

If an input is programmed as All High (Input ON), this input has to stay high throughout the whole window. If it goes LOW anywhere within the window, fault output will be generated per T- or E-Stop selection.

If an input is programmed as All Low (Input OFF), this input has to stay low throughout the whole window. If it goes HIGH anywhere within the window, fault output will be generated per T- or E-Stop selection.

Position High/Low

Same as All High/Low, but must also see an input transition outside the window.

Disable

Each sensor can be individually disabled in the case of not using all sensors, or if a particular sensor is not working.

4.12 Sensor Name Programming

The following DUAL PORT RAM Registers are used for Sensor Name Programming:

- Sensor String Index
- Sensor Number
- Sensor Name Command
- Sensor Name
- Sensor # Name (Read Only)

Up to 36 sixteen-character names can be defined in the function module's "Name Pool." These names can be assigned to any input for any tool. The commands are assigned to bits in the Sensor Name Command word. The following commands are supported:

1. Read From Name Pool (Bit b0)

This allows the user to browse the list of sensor names. There are 36 names, the first 22 are predefined and the remainder are user defined. Prior to this command being issued, the user must enter a value into the Sensor String Index Register. The corresponding name for the Name Pool will then be displayed in the Sensor Name Register.

2. Read Sensor Name (Bit b1)

This allows the user to browse the currently assigned sensor names for the currently selected tool. Prior to this command being issued, the user must enter a value (1-13) into the Sensor Number Register. The name assigned to that sensor will then be displayed in the Sensor Name Registers. The index number (1-36) for this name will be displayed in the Sensor String Index Register.

3. Assign (Bit b2)

This allows the user to assign the name currently displayed in the Sensor Name Registers to the Input Sensor defined in the Sensor Number RegisThis name's index number (1-36) must be in the Sensor String Index Register prior to the Assign Name to Sensor Command is issued. If the user enters a name that is not in the Name Pool, the command will be ignored.

4. Find (Bit b3)

This allows the user to find a name from the Name Pool based on characters entered in the Sensor Name Registers. The search will start with Index #1 in the Name Pool. If a match is found, the Sensor String Index Register is updated with the first match found.

The Sensor Name Register is also updated. If no match is found, the Sensor String Index Register is set to zero and the Sensor Name Register is cleared.

5. Find Next (Bit b4)

This allows the user to search for the next matching name with the characters entered in the last find command. The input sensor name index number will be placed in the Sensor String Index Register and the Sensor Name Register is updated. If no other match is found, the Sensor String Index Register is set to zero and the Sensor Name Register is cleared.

6. Rename (Bit b5)

This allows the user to add or change names in the Name Pool. Prior to issuring this command, the user must enter the name they wish to enter in to the Sensor Name Registers. Then the user must enter the index number that he or she wishes to rename into the Sensor String Index Register.

List of Predefined Names (Index #1-22) in the Name Pool.

Air Pressure, Buckle, Endstock, Knockout, Missing, Overfeed, Slug Detect, Width, Blankfeed, Cam Drive, Eject, Lube, Oil Level, Overload, Thickness, Blow, Column Pressure, High Loop, Misfeed, Oil Pressure, Shortfeed, Transfer.

Note: Predefined names CAN BE REPLACED with user defined names.

4.13 Tool Names

Each tool will be assigned a 0 to 8 character name. The name will be stored with the tool in the DPPLS module. The currently active tool name, if so assigned, will be stored in the active program name. The following registers will be defined in dual port RAM.

DUAL PORT RAM REGISTERS

1	command
2	tool number
3–6	tool name
7	destination tool number
8	active program name

The commands are assigned to bits in the Tool Command word. The following commands will be supported:

1. FIND (Bit b0)

The DPPLS module will search the tools for the first one with a name that matches the name in the tool name registers. The search will start at tool #1. Unused characters in the search name are treated as wildcards (i.e., "TOM" will match "TOM, "TOMMY," or "TOMORROW"). The number and name of the matching tool will be placed in the dual port RAM registers. If no match is found then the tool number register is set to zero and the tool name registers are filled with nulls (zeroes).

2. FIND NEXT (Bit b1)

The DPPLS module will search for the next tool with a name that matches the search string entered in the last find command. The search will start at the tool number specified in the tool number register. The number and name of the matching tool will be placed in the dual port RAM registers. If no match is found, then the tool number register is set to zero and the tool name registers are filled with nulls (zeroes).

3. SELECT (Bit b2)

The DPPLS module will select the tool with the name matching the name in the tool name registers as the active tool. If the name of the tool specified by the tool number register is the same as the name in the tool name registers, then that tool will be selected. Otherwise, the function module will search for a tool with a matching name, starting at tool #1. If a match is found then that tool will be come the active tool, and its number and name will be placed in the tool number and tool name registers. If a match is not found, then the active tool is not changed, the tool number is set to zero and the tool name registers are filled with nulls.

4. COPY (Bit b3)

The DPPLS module will copy the tool specified in the tool number register to the tool number specified in the destination tool number register. The tool name for the destination tool will be set to spaces.

5. RENAME (Bit b4)

The name for the tool specified in the tool number register will be changed to the name in the tool name registers.

6. DELETE (Bit b5)

The DPPLS module will delete the program specified by the tool number register and the tool name register. If the name of the tool specified in the tool number register matches the name in the tool name register, then that tool will be deleted. A deleted tool is set to all zeroes. The tool name registers will be filled with nulls. If the tools name does not match the name in the tool name registers, then the tool is not deleted and the tool name registers are not changed. Note that for delete to work the match must be exact — i.e., "TOM" will only match "TOM," it will not match "TOMMY" or "TOMOR-ROW."

7. READ (Bit b6)

The name for the tool specified in the tool number register will be placed in the tool name registers.

4.14 Leading and Trailing Edge Speed Compensation

Trailing Edge Speed Compensation and Leading Edge Speed Compensation allow you to dynamically advance or retard a programmable output based on a resolver speed. This is useful for compensating field device response time. Trailing Edge Speed Compensation is not available on dwells using Angle-ON/Time-OFF.

For example, consider an output driving a solenoid with a turn **ON** time of 10 ms and a turn **OFF** time of 5 ms. For this application, the output needs to be triggered accurately at 120° to 180° over a speed range of 60 RPM to 120 RPM. Table 3 (top of next page) demonstrates the effect of the speed compensation.

Note: The Leading or Trailing Edge Speed Compensation values must be a whole number.

CALCULATION:

@ 60 RPM the number of degrees per second = 360° Therefore, in 10 ms, the resolver shaft rotates 3.6° , in 5 ms, the resolver shaft rotates 1.8° .

@ 120 RPM the number of degrees per second = 720° . Therefore, in 10 ms, the resolver shaft rotates 7.2 degrees, and in 5 ms, the resolver shaft rotates 3.6 degrees.

EXAMPLE 1

At 60 RPM, it can be seen that a 10 ms propagation delay in the solenoid causes the output to turn On 3.6° (123.6°) after the programmed On point and a 5 ms propagation delay in the solenoid causes the output to turn off 1.8° (181.8°) after the programmed off point.

If the application is to run at 60 RPM constantly, we can use these values to adjust the setpoints to compensate for the delays in the solenoid actuation. However, in a variable speed application this no longer holds true as the propagation delays result in larger positional error at higher speed.

EXAMPLE 2

At 120 RPM, it can be seen that a 10 ms propagation delay in the solenoid causes the output to turn On 7.2° (127.2°) after the programmed On point and a 5 ms propagation delay in the solenoid causes the output to turn off 3.6° (183.6°) after the programmed off point.

Speed compensation is applied linearly over the speed range and is entered as an amount of compensation to be added over a 100 RPM range. From these examples, the speed compensation for the leading and the trailing edges can be calculated as follows:

@ 100 RPM with 10 ms propagation delay

100 RPM \div 60 = 1.666 revolutions per second 1.666 rps x 360 (scale factor + 1) = 600 unit per sec. 1 sec. \div 600 = 1.666 ms per unit

10 ms propagation delay \div 1.666 ms = 6.00 LE speed compensation = 6°

5 ms propagation delay \div 1.666 ms = 3.00 TE speed compensation = 3°

Examples 3 and 4 of table 9 demonstrate the results of the applied speed compensation.

Note: TE Speed Compensation is not available on dwells using Angle-ON/Time-OFF.

Example	Resolver Speed (RPM)	On Setpoint	Off Setpoint	Speed Compensation Enable	Leading Compensation	Trailing Edge	Output Switching Angles	Solenoid Actuation Angles
1	60	120°	180°	No	0°	0°	ON 120° OFF 180°	ON 123° OFF 182°
2	120	120°	180°	No	0°	0°	ON 120° OFF 180°	ON 127° OFF 184°
3	60	120°	180°	Yes	4°	2°	ON 116° OFF 178°	ON 120° OFF 180°
4	120	120°	180°	Yes	7°	4°	ON 113° OFF 176°	ON 120° OFF 180°

Table 9. Leading and Trailing Edge Speed Compensation

4.15 Password Levels (see Appendix A)

Password Levels are as follows:

PW1: Supervisor Restricted

- Renaming tools (if names are going to be used)
- Deleting tools
- Copy of tools
- Offset
- High Motion Limit/Low Motion Limit
- No Motion Detect Time
- Top Stop Angle
- Engagement Angle
- Reset of tool counter
- Reset of total counter
- Brake danger limit

PW2: Operator Restricted

- Selection of tools
- Search for tools
- Die Protection: changing names of die inputs (if names used), fault types, input types, windows (to,from), die protect disable, die protect reset
- PLS Restricted Channels: channel type, speed compensation, dwells (ON, OFF set points)
- Counters: change batch preset values, change quality preset values, reset batch counter, reset quality counter, batch disable, quality disable, inch mode, brake clear (from counter reset/preset), program enable.

5. DPPLS Module Addresses —

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				y		ncac	0 DIL	us (1	Stat	cimal Address: 132 I/O Sta									
DPRQDBDAIMBDXMOTBWXDPDBCBIFOESX=Not UsedMOT=MOT=Motion Output0RPM exceeds the Motion Hi/LoPE=Program Enable0=RPM exceeds the Motion Hi/Lo0=RPM exceeds the Motion Hi/Lo0=No input1=RPM within the Motion Hi/Lo1=RPM exceeds the Motion Hi/Lo1=Input presentB=Brake Danger Output; fail safe0=Stopping time exceeds the O0=Fault present1=No faultIM=Inch Mode (disable die proteFO=FaultFaultI=input presentIImput presentFO=FaultFaultI=input presentImput presentFO=FaultImput presentImput presentImput presentImput presentFO=B	LSI													I	MSD ¹				
X = Not UsedMOT = Motion OutputPE = Program Enable0 = RPM exceeds the Motion Hi/Lo0 = No input1 = Input present1 = Input presentBD = Brake Danger Output; fail safe0 = Fault presentBD = Brake Danger Output; fail safe0 = Fault present1 = Stopping time exceeds the c1 = No faultIM = Inch Mode (disable die proteE-S = Emergency Stop Output; fail safeIM = Inch Mode (disable die prote0 = Fault present1 = No faultFO = Fault Output (diagnostic); fail safe0 = No input1 = No fault1 = input presentFO = Fault1 = No faultFO = Fault1 = Input present1 = No fault1 = input presentBI = Brake Input0 = Brake input not present (Brake Mode)0 = No input1 = Input present0 = No input1 = Input present0 = No input1 = Input presentDPR = Die Protect Reset0 = No input1 = Input present0 = No input	TS PE	ES	FO	ві	вс	DPD	x	BW	мот	x	BD	ІМ	BDA	QD	DPR				
DPD = Die Protect Disable 0 = No input 1 = Input present BW = Broken Wire 0 = Broken wire fault 1 = No broken wire fault	LowLimit w Limit afe langer limit anger limit ect, speed tion)	tion Hi/ n Hi/Lo t; fail sa ds the c in the d lie prote n detec	t the Motio r Outpu exceed is with isable o d motio	a Outpur exceeds vithin th Danger ng time Mode (d tion and tion and toresent Disable out oresent le ut oresent Reset out oresent	Motion RPM e RPM w Brake Stoppin Inch M pensat no inpu input p Batch No inp Input p Oisab No inp Input p Protect No inp Input p	= 0 = 1 = 0 = 1 = 0 = 1 = 0 = 1 = Quality 0 = 1 = 1 = 1 = 1 =	MOT BD IM BDA QD = DPR =		2)	e ail safe Mode) n Mode	e fail sa ostic); fa Brake ent (Ru	able fail safe Output; (diagno resent ot pres	am Ena but present Dutput; present It y Stop present It Dutput It input pr input pr input pr input pr esent t Disab ut present re n wire fa ken wir	Used Progra No inj Input Stop C Fault No fau ergenc Fault No fau Fault No fau Brake Brake Brake Brake Clea No inp Input Protec No inp Input Erken Wi Broker No bro	Not = 0 = 1 = Top 0 = 1 = Ema 0 = 1 = Bra 0 = 1 = Bra 0 = 1 = Bra 0 = 1 = 1 = Die 0 = 1 =	L X = PE T-S = E-S = FO BI = DPD = BW =			

Decimal Address: 140

Sensor Status (16 Bit Read Only)

MSD						MSD														
х	х	х	IN13	IN12	IN11	IN10	IN9	IN8	IN7	IN6	IN5	IN4	IN3	IN2	IN1					

IN1 – IN13 = Input 1 through input 13

¹ MSD = Most significant digit LSD = Least significant digit Instruction Manual

Decimal Address: 160

Module Inputs (16 Bit Write Only)

MSD	MSD Lt														
DPR	QD	BDA	ІМ	х	х	х	x	х	DPD	х	х	х	х	вс	х
X BC DPD IM	= = =	Not use Brake C Die Pro Inch Mo	d Clear tect Dis de	sable	-		_	E (3DA QD OPR	= B = C = D	atch Di Quality I Vie Prot	sable Disable ect Res	set		

Decimal Address: 300

Counter Reset/Preset (14 Bit Read/Write)

MSD													LSD
DPR	QD	BDA	IM	DPD	BC	x	x	x	PE	QCR	BCR	TOCR	TCR

X = Not used TCR = Tool Count Reset to Zero (0) TOCR = Total Count Reset to Zero (0) BCR = Batch Count Reset to Preset QCR = Quality Count Reset to Preset PE = Program Enable BC = Brake Clear

DPD = Die Protect Disable IM = Inch Mode BDA = Batch Disable QD = Quality Disable DPR = Die Protect Reset

Decimal Address: 302

Fault Status (14 Bit Read/Write)

MSD													LSD
x	IN13F	IN12F	IN11F	IN10F	IN9F	IN8F	IN7F	IN6F	IN5F	IN4F	IN3F	IN2F	IN1 F

X = Not used

IN1F – IN13F = Input 1 fault through input 13 fault

Decimal Address 1492

Sensor Name Command (16 Bit Read/Write)

	MSD															LSD
	x	x	x	х	х	x	x	x	х	x	RSN	FNSN	FSN	ANS	RSN	RNP
X RN RS AN	a a a a a a a = Not used RNP = Read Name from Name Pool RSN = Read Sensor Name NS = Assign							FS FN RS	N = SN = N =	= Find = Find = Rer	d d Next name					

Decimal Address 296

Sensor Failed Status (14 Bit Read/Write)

MSD													LSD
x	S13F	S12F	S11F	S10F	S9F	S8F	S7F	S6F	S5F	S4F	S3F	S2F	S1F

S1F – S13F = Sensor 1 Failed through Sensor 13 Failed

Note: Used only when Position High (PHI) and Position Low (PLO) fail to see a transition.

Decimal Address 150

Counter Output Status (16 Bit Read Only)

Instruction Manual

Decimal Address 630, 662, 694, Input Type (14 Bit Read/Write) 726, 758, 790, 822, 854

Decimal Address 1312, 1344, 1376, 1408, 1440

Input Type (16 Bit Read/Write)

Decimal Address 256

Read/Write Error and Address (14 Bit Read/Write)

MSD													LSD
EADD	ENUM	ENUM	ENUM	ENUM									

EADD = Error Address

ENUM = Error Number

- 1 = Attempt to fine tune a non-existing dwell
- 2 = New dwell out of range
- 3 = Programming a parameter during motion
- 4 =Value out of range
- 5 = Function module is busy
- 6 = Program enable input is not active
- 7 = Attempting to fine tune on a bad address

- 8 = Access to fine tune control word is not available
- 9 = Attempt to program other than first dwell during Time-Off Mode
- 10 = Attempting to write Ch. 7 or 8 with Brake Mode active
- 12 = Password 1 not enabled
- 13 = Password 2 not enabled

Decimal Address 632, 664, 696, 728 760, 792, 824, 856

Input Fault Type (14 Bit Read/Write)

MSD													LSD
x	x	x	x	x	x	x	x	x	x	x	x	тs	ES
X ES TS Bi Bi	= E = ⁻ it 0 = it 1 =	Not used E-Stop F-Stop = 1 E-Sto = 1 T-Sto	p p		-				-				

Decimal Address 1314, 1346, 1378, 1410, 1442

Input Fault Type (16 Bit Read/Write)

MSD															LSD
х	х	x	х	х	x	х	х	x	х	x	х	х	х	тs	ES
X ES TS B	= = it 0 it 1	Not use E-Stop T-Stop = 1 E-S = 1 T-S	ed Stop	-		-			-		-				
2		c	, cop			-									

Decimal Address 134

Output (16 Bit Read Only)

	MSD															LSD
	PLS16	PLS15	PLS14	PLS13	PLS12	PLS11	PLS10	PLS9	PLS8	PLS7	PLS6	PLS5	PLS4	PLS3	PLS2	PLS1
PL	X S1 – P	LS16	= N = P 1	lot used LS Cha = ON,	d annels Output	1 throu is turne	gh 16 ed on									

0 = OFF, Output is turned off

Instruction Manual

Tool Command (16 Bit Read/Write) **Decimal Address 896** LSD MSD FIND READ DELETE х х х х х х х х х RENAM COPY SELECT FIND NEXT Х Not used Group# + 256* Channel Type (14 Bit Read/Write) **Decimal Address²** MSD LSD х х х х х ALCH х х х х х GRP GRP GRP Х = Not used ALCH All Channels = = ANGE On/Off 0 ANGE On/Time Off 1 = GRP Group = 000 = 0 001 = 1 010 = 2 011 = 3 100 = 4 ² Group # + 256* Chan Type's decimal address depends upon channel number (e.g., Decimal Address for Channel 1 is 324)

6. Memory Map for DPPLS Module —

Decm	Hex	Туре	Description	Decm	Hex	Туре	Description
128	0080	Read Only Area	RPM	380	017C	Read/Write Area	Ch 2 SP 6 ON
130	0082	Read Only Area	Position	382	017E	Read/Write Area	Ch 2 SP 6 OFF
132	0084	Read Only Area	I/O Status (16 bits)	384	0180	Read/Write Area	Ch 2 SP 7 ON
134	0086	Read Only Area	Outputs (1-16)	386	0182	Read/Write Area	Ch 2 SP 7 OFF
136	0088	Read Only Area	Stopping Time	388	0184	Read/Write Area	LE Comp Chan 3
138	008A	Read Only Area	Outputs (9-16)	390	0186	Read/Write Area	TE Comp Chan 3
140	008C	Read Only Area	Sensor Status	392	0188	Read/Write Area	PLS Ch 3 Type
150	0096	Read Only Area	Counter Status	394	018A	Read/Write Area	Ch 3 SP 1 ON
152	0098	Read Only Area	Press height	396	018C	Read/Write Area	Ch 3 SP 1 OFF
160	00A0	Write Only Area	Module Inputs	398	018E	Read/Write Area	Ch 3 SP 2 ON
162	00A2	Write Only Area	Not used	400	0190	Read/Write Area	Ch 3 SP 2 OFF
164	00A4	Write Only Area	PW Entry 1	402	0192	Read/Write Area	Ch 3 SP 3 ON
166	00A6	Write Only Area	PW Entry 2	404	0194	Read/Write Area	Ch 3 SP 3 OFF
188	00BC	Write Only Area	FineTune Location	406	0196	Read/Write Area	Ch 3 SP 4 ON
100	0005	Muite Only Area	Address	408	0198	Read/Write Area	Ch 3 SP 4 OFF
190	00BE	write Only Area	Fine lune Control	410	019A	Read/Write Area	Ch 3 SP 5 ON
056	0100	Dood/M/rite Area	WORD	412	019C	Read/Write Area	
200	0100	Read/Write Area	(addr+10° ERK)	414	019E	Read/Write Area	
200	0104	Read/Write Area	Unset High Motion Limit	416	01A0	Read/Write Area	
202	0108	Read/Write Area		410	01A2	Read/Write Area	
204	0100	Read/Write Area	Program Number	420	0146	Read/Write Area	
268	0100	Read/Write Area	Danger Limit	422	0180	Read/Write Area	TE Comp Chan 4
200	0100	Reau/White Area	Daliger Lillin	424	010A	Read/Write Area	PIS Ch / Type
296	0128	Read/Write Area	Failed Status	420	014C	Read/Write Area	Ch 4 SP 1 ON
298	012A	Read/Write Area	Motion Det. Timer	430	01/10	Read/Write Area	Ch 4 SP 1 OFF
300	012C	Read/Write Area	Cnt. Reset/Preset	432	01RL	Read/Write Area	Ch 4 SP 2 ON
302	012E	Read/Write Area	Fault Status	434	01B2	Read/Write Area	Ch 4 SP 2 OFF
320	0140	Read/Write Area	LE Comp Chan 1	436	01B4	Read/Write Area	Ch 4 SP 3 ON
322	0142	Read/Write Area	TE Comp Chan 1	438	01B6	Read/Write Area	Ch 4 SP 3 OFF
324	0144	Read/Write Area	PLS Ch 1 Type	440	01B8	Read/Write Area	Ch 4 SP 4 ON
326	0146	Read/Write Area	CH 1 SP 1 ON	442	01BA	Read/Write Area	Ch 4 SP 4 OFF
328	0148	Read/Write Area	Ch 1 SP 1 OFF	444	01BC	Read/Write Area	Ch 4 SP 5 ON
330	014A	Read/Write Area	Ch 1 SP 2 ON	446	01BE	Read/Write Area	Ch 4 SP 5 OFF
332	014C	Read/Write Area	Ch 1 SP 2 OFF	448	01C0	Read/Write Area	Ch 4 SP 6 ON
334	014E	Read/Write Area	Ch 1 SP 3 ON	450	01C2	Read/Write Area	Ch 4 SP 6 OFF
336	0150	Read/Write Area	Ch 1 SP 3 OFF	452	01C4	Read/Write Area	Ch 4 SP 7 ON
338	0152	Read/Write Area	Ch 1 SP 4 ON	454	01C6	Read/Write Area	Ch 4 SP7 OFF
340	0154	Read/write Area		456	01C8	Read/Write Area	LE Comp Chan 5
342	0156	Read/Write Area		458	01CA	Read/Write Area	TE Comp Chan 5
344	0156	Read/White Area		460	0100	Read/Write Area	PLS Ch 5 Type
340	015A 015C	Read/ White Area		462	010E	Read/Write Area	
350	015C	Read/Write Area	Ch 1 SP 7 ON	404	01D0		
352	0160	Read/Write Area		400	01D2	Read/Write Area	
354	0162	Read/Write Area	LE Comp Chan 2	470	01D4	Read/Write Area	
356	0164	Read/Write Area	TE Comp Chan 2	470	01D0	Read/Write Area	Ch 5 SP 3 OFF
358	0166	Read/Write Area	PLS Ch 2 Type	474	01D0	Read/Write Area	Ch 5 SP 4 ON
360	0168	Read/Write Area	CH 2 SP 1 ON	476	01DC	Read/Write Area	Ch 5 SP 4 OFF
362	016A	Read/Write Area	Ch 2 SP 1 OFF	478	01DE	Read/Write Area	Ch 5 SP 5 ON
364	016C	Read/Write Area	Ch 2 SP 2 ON	480	01E0	Read/Write Area	Ch 5 SP 5 OFF
366	016E	Read/Write Area	Ch 2 SP 2 OFF	482	01E2	Read/Write Area	Ch 5 SP 6 ON
368	0170	Read/Write Area	Ch 2 SP 3 ON	484	01E4	Read/Write Area	Ch 5 SP 6 OFF
370	0172	Read/Write Area	Ch 2 SP 3 OFF	486	01E6	Read/Write Area	Ch 5 SP 7 ON
372	0174	Read/Write Area	Ch 2 SP 4 ON	488	01E8	Read/Write Area	Ch 5 SP 7 OFF
374	0176	Read/Write Area	Ch 2 SP 4 OFF	490	01EA	Read/Write Area	LE Comp Chan 6
376	0178	Read/Write Area	Ch 2 SP 5 ON	492	01EC	Read/Write Area	TE Comp Chan 6
378	017A	Read/Write Area	Ch 2 SP 5 OFF	494	01EE	Read/Write Area	PLS Ch 6 Type

Decm	Hex	Туре	Description	Decm	Hex	Туре	Description
496	01F0	Read/Write Area	Ch 6 SP 1 ON	610	0262	Read/Write Area	Inp 8 Fault Angle
498	01F2	Read/Write Area	Ch 6 SP 1 OFF	612	0264	Read/Write Area	Inp 9 Fault Angle
500	01F4	Read/Write Area	Ch 6 SP 2 ON	614	0266	Read/Write Area	Inp 10 Fault Angle
502	01F6	Read/Write Area	Ch 6 SP 2 OFF	616	0268	Read/Write Area	Inp 11 Fault Angle
504	01F8	Read/Write Area	Ch 6 SP 3 ON	618	026A	Read/Write Area	Inp 12 Fault Angle
506	01FA	Read/Write Area	Ch 6 SP 3 OFF	620	026C	Read/Write Area	Inp 13 Fault Angle
508	01FC	Read/Write Area	Ch 6 SP 4 ON	630	0276	Read/Write Area	Inp 1 Type
510	01FE	Read/Write Area	Ch 6 SP 4 OFF	632	0278	Read/Write Area	Inp 1 Fault Type
512	0200	Read/Write Area	Ch 6 SP 5 ON	634	027A	Read/Write Area	Inp 1 SP 1 ON
514	0202	Read/Write Area	Ch 6 SP 5 OFF	636	027C	Read/Write Area	Inp 1 SP 1 OFF
516	0204	Read/Write Area	Ch 6 SP 6 ON	638	027E	Read/Write Area	Inp 1 SP 2 ON
518	0206	Read/Write Area	Ch 6 SP 6 OFF	640	0280	Read/Write Area	Inp 1 SP 2 OFF
520	0208	Read/Write Area	Ch 6 SP 7 ON	642	0282	Read/Write Area	Inp 1 SP 3 ON
522	020A	Read/Write Area	Ch 6 SP 7 OFF	644	0284	Read/Write Area	Inp 1 SP 3 OFF
524	0200	Read/Write Area	LE Comp Chan 7	646	0286	Read/Write Area	Input 1 Trans 1
526	020E	Read/Write Area	TE Comp Chan 7	648	0288	Read/Write Area	Input 1 Trans 2
528	0210	Read/Write Area	PLS Ch 7 Type	650	028A	Read/Write Area	Input 1 Trans 3
530	0212	Read/Write Area		652	0280	Read/Write Area	Input 1 Trans 4
532	0214	Read/Write Area		654	028E	Read/Write Area	Input 1 Trans 5
536	0210	Read/Write Area		000	0290		Input 1 Trans 6
530	0210			660	0292	Read/Write Area	Input 1 Trans 7
530	021A	Read/Write Area		660	0294	Read/Write Area	Input 1 Trans o
540	0210	Read/Write Area		664	0290		Input 2 Type
544	0270	Read/Write Area		666	0290	Read/Write Area	Inp 2 Fault Type
546	0222	Read/Write Area	Ch 7 SP 5 ON	668	0200	Read/Write Area	Inp 2 SP 1 OFF
548	0224	Read/Write Area	Ch 7 SP 5 OFF	670	029C	Read/Write Area	Inp 2 SP 2 ON
550	0226	Read/Write Area	Ch 7 SP 6 ON	672	0240	Read/Write Area	Inp 2 SP 2 OFF
552	0228	Read/Write Area	Ch 7 SP 6 OFF	674	02A2	Read/Write Area	Inp 2 SP 3 ON
554	022A	Read/Write Area	Ch 7 SP 7 ON	676	02A4	Read/Write Area	Inp 2 SP 3 OFF
556	022C	Read/Write Area	Ch 7 SP 7 OFF	678	02A6	Read/Write Area	Input 2 Trans 1
558	022E	Read/Write Area	LE Comp Chan 8	680	02A8	Read/Write Area	Input 2 Trans 2
560	0230	Read/Write Area	TE Comp Chan 8	682	02AA	Read/Write Area	Input 2 Trans 3
562	0232	Read/Write Area	PLS Ch 8 Type	684	02AC	Read/Write Area	Input 2 Trans 4
564	0234	Read/Write Area	Ch 8 SP 1 ON	686	02AE	Read/Write Area	Input 2 Trans 5
566	0236	Read/Write Area	Ch 8 SP 1 OFF	688	02B0	Read/Write Area	Input 2 Trans 6
568	0238	Read/Write Area	Ch 8 SP 2 ON	690	02B2	Read/Write Area	Input 2 Trans 7
570	023A	Read/Write Area	Ch 8 SP 2 OFF	692	02B4	Read/Write Area	Input 2 Trans 8
572	023C	Read/Write Area	Ch 8 SP 3 ON	694	02B6	Read/Write Area	Input 3 Type
574	023E	Read/Write Area	Ch 8 SP 3 OFF	696	02B8	Read/Write Area	Inp 3 Fault Type
576	0240	Read/Write Area	Ch 8 SP 4 ON	698	02BA	Read/Write Area	Inp 3 SP 1 ON
578	0242	Read/Write Area	Ch 8 SP 4 OFF	700	02BC	Read/Write Area	Inp 3 SP 1 OFF
580	0244	Read/Write Area	Ch 8 SP 5 ON	702	02BE	Read/Write Area	Inp 3 SP 2 ON
582	0246	Read/Write Area	Ch 8 SP 5 OFF	704	02C0	Read/Write Area	Inp 3 SP 2 OFF
584	0248	Read/Write Area		706	02C2	Read/Write Area	Inp 3 SP 3 ON
586	024A	Read/Write Area		708	02C4	Read/Write Area	Inp 3 SP 3 OFF
588	0240	Read/Write Area		710	0206	Read/Write Area	Input 3 Trans 1
590 502	0240	Read/White Area	Ton Ston Angle	712	0208	Read/Write Area	Input 3 Trans 2
592	0250		Engagement Angle	714	02CA	Read/Write Area	Input 3 Trans 3
596	0252	Read/Write Area	Inn 1 Fault Angle	710	0200	Read/Mrite Area	Input 3 Trans 5
598	0256	Read/M/rite Area	Inn 2 Fault Angle	720	0200	Read/Mrite Area	Input 3 Trans 6
600	0258	Read/Write Area	Inn 3 Fault Angle	720	0200	Read/Write Area	Innut 3 Trans 7
602	025A	Read/Write Area	Inp 4 Fault Angle	724	0202	Read/Write Area	Input 3 Trans 8
604	025C	Read/Write Area	Inp 5 Fault Angle	726	02D9	Read/Write Area	Input 4 Type
606	025E	Read/Write Area	Inp 6 Fault Angle	728	0208	Read/Write Area	Inp 4 Fault Type
608	0260	Read/Write Area	Inp 7 Fault Angle	730	02D0	Read/Write Area	Inp 4 SP 1 ON

Decm	Hex	Туре	Description	Decm	Hex	Туре	Description
700	0200	Deed/M/rite Area		846	034E	Read/Write Area	Inn 7 Trans 5
734	02DC	Read/Write Area	Inp 4 SF 1 OFF	848	0350	Read/Write Area	Inp 7 Trans 6
736	02DL 02E0	Read/Write Area	Inp 4 SP 2 OFF	850	0352	Read/Write Area	Inp 7 Trans 7
738	02E0	Read/Write Area	Inp 4 SP 3 ON	852	0354	Read/Write Area	Inp 7 Trans 8
740	02E2	Read/Write Area	Inp 4 SP 3 OFF	854	0356	Read/Write Area	Inp 8 Type
742	02E6	Read/Write Area	Input 4 Trans 1	856	0358	Read/Write Area	Inp 8 Fault Type
744	02E8	Read/Write Area	Input 4 Trans 2	858	035A	Read/Write Area	Inp 8 SP 1 FROM
746	02EA	Read/Write Area	Input 4 Trans 3	860	035C	Read/Write Area	Inp 8 SP 1 TO
748	02EC	Read/Write Area	Input 4 Trans 4	862	035E	Read/Write Area	Inp 8 SP 2 FROM
750	02EE	Read/Write Area	Input 4 Trans 5	864	0360	Read/Write Area	Inp 8 SP 2 TO
752	02F0	Read/Write Area	Input 4 Trans 6	866	0362	Read/Write Area	Inp 8 SP 3 FROM
754	02F2	Read/Write Area	Input 4 Trans 7	868	0364	Read/Write Area	Inp 8 SP 3 TO
756	02F4	Read/Write Area	Input 4 Trans 8	870	0366	Read/Write Area	Inp 8 Trans 1
758	02F6	Read/Write Area	Input 5 Type	872	0368	Read/Write Area	Inp 8 Trans 2
760	02F8	Read/Write Area	Inp 5 Fault Type	874	036A	Read/Write Area	Inp 8 Trans 3
762	02FA	Read/Write Area	Inp 5 SP 1 ON	876	036C	Read/Write Area	Inp 8 Trans 4
764	02FC	Read/Write Area	Inp 5 SP 1 OFF	878	036E	Read/Write Area	Inp 8 Trans 5
766	02FE	Read/Write Area	Inp 5 SP 2 ON	880	0370	Read/Write Area	Inp 8 Trans 6
768	0300	Read/Write Area	Inp 5 SP 2 OFF	882	0372	Read/Write Area	Inp 8 Trans 7
770	0302	Read/Write Area	Inp 5 SP 3 ON	884	0374	Read/Write Area	Inp 8 Trans 8
772	0304	Read/Write Area	Inp 5 SP 3 OFF	896	0380	Shared Area 1	Tool Command
//4	0306	Read/Write Area	Input 5 Trans 1	898	0382	Shared Area 1	lool Number
776	0308	Read/Write Area	Input 5 Trans 2	900	0384	Shared Area 1	Name Char 1 & 2
778	030A	Read/Write Area	Input 5 Trans 3	902	0300	Shared Area 1	Name Char 5 8 6
780	0300	Read/Write Area	Input 5 Trans 4	904	0300	Shared Area 1	Name Char 5 & 6
782	030E	Read/Write Area	Input 5 Trans 5	900	0304	Shared Area 1	Doct Tool Number
704	0310	Read/Write Area		900	038E	Shared Area 1	Tool Count MS
700	0312	Read/Write Area	Input 5 Trans 7	912	0300	Shared Area 1	Tool Count I S
700	0314	Read/Write Area	Input 6 Type	914	0392	Shared Area 1	Total Count MS
790	0310	Read/Write Area	Inp 6 Fault Type	916	0394	Shared Area 1	Total Count LS
794	031A	Read/Write Area	Inp 6 SP 1 FROM	918	0396	Shared Area 1	Batch Count MS
796	031C	Read/Write Area	Inp 6 SP 1 TO	920	0398	Shared Area 1	Batch Count LS
798	031F	Read/Write Area	Inp 6 SP 2 FROM	922	039A	Shared Area 1	Quality Count MS
800	0320	Read/Write Area	Inp 6 SP 2 TO	924	039C	Shared Area 1	Quality Count LS
802	0322	Read/Write Area	Inp 6 SP 3 FROM	926	039E	Shared Area 1	Batch Preset MS
804	0324	Read/Write Area	Inp 6 SP 3 TO	928	03A0	Shared Area 1	Batch Preset LS
806	0326	Read/Write Area	Inp 6 Trans 1	930	03A2	Shared Area 1	Quality Preset MS
808	0328	Read/Write Area	Inp 6 Trans 2	932	03A4	Shared Area 1	Quality Preset LS
810	032A	Read/Write Area	Inp 6 Trans 3	934	03A6	Shared Area 1	Cntr Inhibits 1-4
812	032C	Read/Write Area	Inp 6 Trans 4	936	03A8	Shared Area 1	Cntr Inhibits 5-8
814	032E	Read/Write Area	Inp 6 Trans 5	938	03AA	Shared Area 1	Cntr Inhibits 9-12
816	0330	Read/Write Area	Inp 6 Trans 6	940	03AC	Shared Area 1	Cntr Inhibits 13
818	0332	Read/Write Area	Inp 6 Trans 7	942	03AE	Shared Area 1	Slug Count 1
820	0334	Read/Write Area	Inp 6 Trans 8	944	03B0	Shared Area 1	Slug Count 2
822	0336	Read/Write Area	Inp 7 Type	946	03B2	Shared Area 1	Slug Count 3
824	0338	Read/Write Area	Inp 7 Fault Type	948	0384	Shared Area 1	Slug Count 4
826	033A	Read/Write Area	Inp 7 SP 1 FROM	930	0200	Shared Area 1	Slug Count 5
828	0330	Read/write Area		952	0200	Shared Area 1	Slug Count 6
03U 022	0335	Read/Write Area		904 956	03BA	Shared Area 1	Slug Count 8
032 834	0340	Read/Write Area	Inp 7 SP 2 FDOM	958	03RF	Shared Area 1	Slug Count 9
836	0344	Read/Mrite Area		960	03C0	Shared Area 1	Slug Count 10
838	0344	Read/Write Area	Inp 7 Trans 1	962	0302	Shared Area 1	Slug Count 11
840	0340	Read/Write Area	Inn 7 Trans 2	964	03C4	Shared Area 1	Slug Count 12
842	034A	Read/Write Area	Inp 7 Trans 3	966	03C6	Shared Area 1	Slug Count 13
844	034C	Read/Write Area	Inp 7 Trans 4	1024	0400	Shared Area 2	LE Comp Chan 9

Decm	Hex	Туре	Description	Decm	Hex	Туре	Description
				4420	0470	Charad Area 2	
1026	0402	Shared Area 2	TE Comp Chan 9	1130	0472	Shared Area 2	
1028	0404	Shared Area 2	PLS CH 9 Type	1140	0474	Shared Area 2	
1030	0406	Shared Area 2	CH 9 SP 1 ON	1142	0470	Shared Area 2	
1032	0408	Shared Area 2	CH 9 SP 1 OFF	1144	0470	Shared Area 2	
1034	040A	Shared Area 2	CH 9 SP 2 ON	1140	0470	Shared Area 2	
1036	0400	Shared Area 2		1150	047C	Shared Area 2	CH 12 SP 5 OFF
1030	040E	Shared Area 2		1152	0480	Shared Area 2	CH 12 SP 6 ON
1040	0410	Shared Area 2		1154	0482	Shared Area 2	CH 12 SP 6 OFF
1042	0412	Shared Area 2		1156	0484	Shared Area 2	CH 12 SP 7 ON
1044	0414	Shared Area 2		1158	0486	Shared Area 2	CH 12 SP 7 OFF
1040	0410	Shared Area 2		1160	0488	Shared Area 2	LE Comp Chan 13
1040	0410	Shared Area 2		1162	048A	Shared Area 2	TE Comp Chan 13
1050	0410	Shared Area 2		1164	048C	Shared Area 2	PLS CH 13 Type
1052	0410	Shared Area 2		1166	048E	Shared Area 2	CH 13 SP 1 ON
1054	0470	Shared Area 2		1168	0490	Shared Area 2	CH 13 SP 1 OFF
1058	0420	Shared Area 2	LE Comp Chan 10	1170	0492	Shared Area 2	CH 13 SP 2 ON
1060	0422	Shared Area 2	TE Comp Chan 10	1172	0494	Shared Area 2	CH 13 SP 2 OFF
1062	0426	Shared Area 2	PLS CH 10 Type	1174	0496	Shared Area 2	CH 13 SP 3 ON
1064	0428	Shared Area 2	CH 10 SP 1 ON	1176	0498	Shared Area 2	CH 13 SP 3 OFF
1066	0420 042A	Shared Area 2	CH 10 SP 1 OFF	1178	049A	Shared Area 2	CH 13 SP 4 ON
1068	042C	Shared Area 2	CH 10 SP 2 ON	1180	049C	Shared Area 2	CH 13 SP 4 OFF
1070	042F	Shared Area 2	CH 10 SP 2 OFF	1182	049E	Shared Area 2	CH 13 SP 5 ON
1072	0430	Shared Area 2	CH 10 SP 3 ON	1184	04A0	Shared Area 2	CH 13 SP 5 OFF
1074	0432	Shared Area 2	CH 10 SP 3 OFF	1186	04A2	Shared Area 2	CH 13 SP 6 ON
1076	0434	Shared Area 2	CH 10 SP 4 ON	1188	04A4	Shared Area 2	CH 13 SP 6 OFF
1078	0436	Shared Area 2	CH 10 SP 4 OFF	1190	04A6	Shared Area 2	CH 13 SP 7 ON
1080	0438	Shared Area 2	CH 10 SP 5 ON	1192	04A8	Shared Area 2	CH 13 SP 7 OFF
1082	043A	Shared Area 2	CH 10 SP 5 OFF	1194	04AA	Shared Area 2	LE Comp Chan 14
1084	043C	Shared Area 2	CH 10 SP 6 ON	1196	04AC	Shared Area 2	TE Comp Chan 14
1086	043E	Shared Area 2	CH 10 SP 6 OFF	1198	04AE	Shared Area 2	PLS CH 14 Type
1088	0440	Shared Area 2	CH 10 SP 7 ON	1200	04B0	Shared Area 2	CH 14 SP 1 ON
1090	0442	Shared Area 2	CH 10 SP 7 OFF	1202	04B2	Shared Area 2	CH 14 SP 1 OFF
1092	0444	Shared Area 2	LE Comp Chan 11	1204	04B4	Shared Area 2	CH 14 SP 2 ON
1094	0446	Shared Area 2	TE Comp Chan 11	1206	04B6	Shared Area 2	CH 14 SP 2 OFF
1096	0448	Shared Area 2	PLS CH 11 Type	1208	04B8	Shared Area 2	CH 14 SP 3 ON
1098	044A	Shared Area 2	CH 11 SP 1 ON	1210	04BA	Shared Area 2	CH 14 SP 3 OFF
1100	044C	Shared Area 2	CH 11 SP 1 OFF	1212	04BC	Shared Area 2	CH 14 SP 4 ON
1102	044E	Shared Area 2	CH 11 SP 2 ON	1214	04BE	Shared Area 2	CH 14 SP 4 OFF
1104	0450	Shared Area 2	CH 11 SP 2 OFF	1216	04C0	Shared Area 2	CH 14 SP 5 ON
1106	0452	Shared Area 2	CH 11 SP 3 ON	1218	04C2	Shared Area 2	CH 14 SP 5 OFF
1108	0454	Shared Area 2	CH 11 SP 3 OFF	1220	04C4	Shared Area 2	CH 14 SP 6 ON
1110	0456	Shared Area 2	CH 11 SP 4 ON	1222	04C6	Shared Area 2	CH 14 SP 6 OFF
1112	0458	Shared Area 2	CH 11 SP 4 OFF	1224	0408	Shared Area 2	CH 14 SP 7 ON
1114	045A	Shared Area 2	CH 11 SP 5 ON	1226	04CA	Shared Area 2	CH 14 SP 7 OFF
1116	045C	Shared Area 2	CH 11 SP 5 OFF	1228	0400	Shared Area 2	LE Comp Chan 15
1118	045E	Shared Area 2	CH 11 SP 6 ON	1230		Shared Area 2	
1120	0460	Shared Area 2	CH 11 SP 6 OFF	1232	0400	Shared Area 2	
1122	0462	Shared Area 2	CH 11 SP 7 ON	1204	0402	Shared Area 2	
1124	0464	Shared Area 2	CH 11 SP 7 OFF	1230	0404	Shared Area 2	
1120	0400	Shared Area 2	LE Comp Chan 12	12/0	0400	Shared Area 2	CH 15 SP 2 OFF
1120	0400	Shared Area 2		1240	0404	Shared Area 2	CH 15 SP 3 ON
1130	046A	Shared Area 2	PLS CH 12 Type	1244	0400	Shared Area 2	CH 15 SP 3 OFF
1132	0460	Shared Area 2		12/16		Shared Area 2	CH 15 SP / ON
1134		Shared Area 2		1240	04F0	Shared Area 2	CH 15 SP 4 OFF
1100	0410	Shareu Area Z			0.20	0.10.00 / 100 L	

Decm	Hex	Туре	Description	Decm	Hex	Туре	Description
1250	04E2	Shared Area 2	CH 14 SP 5 ON	1380	0564	Shared Area 2	Inp 11 SP 1 FROM
1252	04E4	Shared Area 2	CH 15 SP 5 OFF	1382	0566	Shared Area 2	Inp 11 SP 1 TO
1254	04E6	Shared Area 2	CH 15 SP 6 ON	1384	0568	Shared Area 2	Inp 11 SP 2 FROM
1256	04E8	Shared Area 2	CH 15 SP 6 OFF	1386	056A	Shared Area 2	Inp 11 SP 2 TO
1258	04EA	Shared Area 2	CH 15 SP 7 ON	1388	056C	Shared Area 2	Inp 11 SP 3 FROM
1260	04EC	Shared Area 2	CH 15 SP 7 OFF	1390	056F	Shared Area 2	Inp 11 SP 3 TO
1262	04EE	Shared Area 2	LE Comp Chan 16	1392	0570	Shared Area 2	Inp 11 Trans 1
1264	04F0	Shared Area 2	TE Comp Chan 16	1394	0572	Shared Area 2	Inp 11 Trans 2
1266	04F2	Shared Area 2	PLS CH 16 Type	1396	0574	Shared Area 2	Inp 11 Trans 3
1268	04F4	Shared Area 2	CH 16 SP 1 ON	1398	0576	Shared Area 2	Inp 11 Trans 4
1270	04F6	Shared Area 2	CH 16 SP 1 OFF	1400	0578	Shared Area 2	Inp 11 Trans 5
1272	04F8	Shared Area 2	CH 16 SP 2 ON	1402	057A	Shared Area 2	Inp 11 Trans 6
1274	04FA	Shared Area 2	CH 16 SP 2 OFF	1404	057C	Shared Area 2	Inp 11 Trans 7
1276	04FC	Shared Area 2	CH 16 SP 3 ON	1406	057E	Shared Area 2	Inp 11 Trans 8
1278	04FE	Shared Area 2	CH 16 SP 3 OFF	1408	0580	Shared Area 2	Inp 12 Type
1280	0500	Shared Area 2	CH 16 SP 4 ON	1410	0582	Shared Area 2	Inp 12 Fault Type
1282	0502	Shared Area 2	CH 16 SP 4 OFF	1412	0584	Shared Area 2	Inp 12 SP 1 FROM
1284	0504	Shared Area 2	CH 16 SP 5 ON	1414	0586	Shared Area 2	Inp 12 SP 1 TO
1286	0506	Shared Area 2	CH 16 SP 5 OFF	1416	0588	Shared Area 2	Inp 12 SP 2 FROM
1288	0508	Shared Area 2	CH 16 SP 6 ON	1418	058A	Shared Area 2	Inp 12 SP 2 TO
1290	050A	Shared Area 2	CH 16 SP 6 OFF	1420	058C	Shared Area 2	Inp 12 SP 3 FROM
1292	050C	Shared Area 2	CH 16 SP 7 ON	1422	058F	Shared Area 2	Inp 12 SP 3 TO
1294	050E	Shared Area 2	CH 16 SP 7 OFF	1424	0590	Shared Area 2	Inp 12 Trans 1
1312	0520	Shared Area 2	Inp 9 Type	1426	0592	Shared Area 2	Inp 12 Trans 2
1314	0522	Shared Area 2	Inp 9 Fault Type	1428	0594	Shared Area 2	Inp 12 Trans 3
1316	0524	Shared Area 2	Inp 9 SP 1 FROM	1430	0596	Shared Area 2	Inp 12 Trans 4
1318	0526	Shared Area 2	Inp 9 SP 1 TO	1432	0598	Shared Area 2	Inp 12 Trans 5
1320	0528	Shared Area 2	Inp 9 SP 2 FROM	1434	059A	Shared Area 2	Inp 12 Trans 6
1322	052A	Shared Area 2	Inp 9 SP 2 TO	1436	059C	Shared Area 2	Inp 12 Trans 7
1324	052C	Shared Area 2	Inp 9 SP 3 FROM	1438	059F	Shared Area 2	Inp 12 Trans 8
1326	052E	Shared Area 2	Inp 9 SP 3 TO	1440	05A0	Shared Area 2	Inp 13 Type
1328	0530	Shared Area 2	Inp 9Trans 1	1442	05A2	Shared Area 2	Inp 13 Fault Type
1330	0532	Shared Area 2	Inp 9 Trans 2	1444	05A4	Shared Area 2	Inp 13 SP 1 FROM
1332	0534	Shared Area 2	Inp 9 Trans 3	1446	05A6	Shared Area 2	Inp 13 SP 1 TO
1334	0536	Shared Area 2	Inp 9 Trans 4	1448	05A8	Shared Area 2	Inp 13 SP 2 FROM
1336	0538	Shared Area 2	Inp 9 Trans 5	1450	05AA	Shared Area 2	Inp 13 SP 2 TO
1338	053A	Shared Area 2	Inp 9 Trans 6	1452	05AC	Shared Area 2	Inp 13 SP 3 FROM
1340	053C	Shared Area 2	Inp 9 Trans 7	1454	05AF	Shared Area 2	Inp 13 SP 3 TO
1342	053E	Shared Area 2	Inp 9 Trans 8	1456	05B0	Shared Area 2	Inp 13 Trans 1
1344	0540	Shared Area 2	Inp 10 Type	1458	05B2	Shared Area 2	Inp 13 Trans 2
1346	0542	Shared Area 2	Inp 10 Fault Type	1460	05B4	Shared Area 2	Inp 13 Trans 3
1348	0544	Shared Area 2	Inp 10 SP 1 FROM	1462	05B6	Shared Area 2	Inp 13 Trans 4
1350	0546	Shared Area 2	Inp 10 SP 1 TO	1464	05B8	Shared Area 2	Inp 13 Trans 5
1352	0548	Shared Area 2	Inp 10 SP 2 FROM	1466	05BA	Shared Area 2	Inp 13 Trans 6
1354	054A	Shared Area 2	Inp 10 SP 2 TO	1468	05BC	Shared Area 2	Inp 13 Trans 7
1356	054C	Shared Area 2	Inp 10 SP 3 FROM	1470	05BE	Shared Area 2	Inp 13 Trans 8
1358	054E	Shared Area 2	Inp 10 SP 3 TO	1472	05C0	Shared Area 2	Sensor String Index
1360	0550	Shared Area 2	Inp 10 Trans 1	1474	05C2	Shared Area 2	Sensor Name 1 & 2
1362	0552	Shared Area 2	Inp 10 Trans 2	1476	05C4	Shared Area 2	Sensor Name 3 & 4
1364	0554	Shared Area 2	Inp 10 Trans 3	1478	05C6	Shared Area 2	Sensor Name 5 & 6
1366	0556	Shared Area 2	Inp 10 Trans 4	1480	05C8	Shared Area 2	Sensor Name 7 & 8
1368	0558	Shared Area 2	Inp 10 Trans 5	1482	05CA	Shared Area 2	Sensor Name 9 & 10
1370	055A	Shared Area 2	Inp 10 Trans 6	1484	05CC	Shared Area 2	Sensor Name 11&12
1372	055C	Shared Area 2	Inp 10 Trans 7	1486	05CF	Shared Area 2	Sensor Name 13814
1374	055E	Shared Area 2	Inp 10 Trans 8	1488	05D0	Shared Area 2	Sensor Name 15&16
1376	0560	Shared Area 2	Inp 11 Type	1490	05D2	Shared Area 2	Sensor Number
1378	0562	Shared Area 2	Inp 11 Fault Type	1492	05D4	Shared Area 2	Snsr Name Comm.

Decm	Hex	Туре	Description	Decm	Hex	Туре	Description
1494	05D6	Shared Area 2	Snsr 1 Name 1 & 2	1614	064E	Shared Area 2	Snsr 8 Name 9 & 10
1496	05D8	Shared Area 2	Snsr 1 Name 3 & 4	1616	0650	Shared Area 2	Snsr 8 Name 11 & 12
1498	05DA	Shared Area 2	Snsr 1 Name 5 & 6	1618	0652	Shared Area 2	Snsr 8 Name 13 & 14
1500	05DC	Shared Area 2	Snsr 1 Name 7 & 8	1620	0654	Shared Area 2	Snsr 8 Name 15 & 16
1502	05DE	Shared Area 2	Snsr 1 Name 9 & 10	1622	0656	Shared Area 2	Snsr 9 Name 1 & 2
1504	05E0	Shared Area 2	Snsr 1 Name 11 & 12	1624	0658	Shared Area 2	Snsr 9 Name 3 & 4
1506	05E2	Shared Area 2	Snsr 1 Name 13 & 14	1626	065A	Shared Area 2	Snsr 9 Name 5 & 6
1508	05E4	Shared Area 2	Shsr 1 Name 15 & 16	1628	065C	Shared Area 2	Snsr 9 Name 7 & 8
1510		Shared Area 2	Shish 2 Name 2 8 4	1630	065E	Shared Area 2	Snsr 9 Name 9 & 10
1512		Shared Area 2	Shisr 2 Name 5 & 4	1632	0660	Shared Area 2	Snsr 9 Name 11 & 12
1516		Shared Area 2	Sher 2 Name 7 & 8	1634	0662	Shared Area 2	Shsr 9 Name 13 & 14
1518	05EE	Shared Area 2	Shisi 2 Name 9 & 10	1630	0666	Shared Area 2	Shor 9 Name 15 & 16
1520	05E0	Shared Area 2	Snsr 2 Name 11 & 12	1640	0000	Shared Area 2	Sher 10 Name 3 & /
1522	05F2	Shared Area 2	Snsr 2 Name 13 & 14	1642	0664	Shared Area 2	Shish to Name 5 & 6
1524	05F4	Shared Area 2	Snsr 2 Name 15 & 16	1644	0660	Shared Area 2	Shish to Name 7 & 8
1526	05F6	Shared Area 2	Snsr 3 Name 1 & 2	1646	066E	Shared Area 2	Snsr 10 Name 9 & 10
1528	05F8	Shared Area 2	Snsr 3 Name 3 & 4	1648	0670	Shared Area 2	Snsr 10 Name 11&12
1530	05FA	Shared Area 2	Snsr 3 Name 5 & 6	1650	0672	Shared Area 2	Snsr 10 Name 13&14
1532	05FC	Shared Area 2	Snsr 3 Name 7 & 8	1652	0674	Shared Area 2	Snsr 10 Name 15&16
1534	05FE	Shared Area 2	Snsr 3 Name 9 & 10	1654	0676	Shared Area 2	Snsr 11 Name 1 & 2
1536	0600	Shared Area 2	Snsr 3 Name 11 & 12	1656	0678	Shared Area 2	Snsr 11 Name 3 & 4
1538	0602	Shared Area 2	Snsr 3 Name 13 & 14	1658	067A	Shared Area 2	Snsr 11 Name 5 & 6
1540	0604	Shared Area 2	Snsr 3 Name 15 & 16	1660	067C	Shared Area 2	Snsr 11 Name 7 & 8
1542	0606	Shared Area 2	Snsr 4 Name 1 & 2	1662	067E	Shared Area 2	Snsr 11 Name 9 & 10
1544	0608	Shared Area 2	Snsr 4 Name 3 & 4	1664	0680	Shared Area 2	Snsr 11 Name 11&12
1546	060A	Shared Area 2	Snsr 4 Name 5 & 6	1666	0682	Shared Area 2	Snsr 11 Name 13&14
1548	060C	Shared Area 2	Snsr 4 Name 7 & 8	1668	0684	Shared Area 2	Snsr 11 Name 15&16
1550	060E	Shared Area 2	Shsr 4 Name 9 & 10	1670	0686	Shared Area 2	Snsr 12 Name 1 & 2
1552	0610	Shared Area 2	Shsr 4 Name 11 & 12	1672	0688	Shared Area 2	Snsr 12 Name 3 & 4
1554	0614	Shared Area 2	ShSr 4 Name 13 & 14	1674	068A	Shared Area 2	Snsr 12 Name 5 & 6
1558	0616	Shared Area 2	Sher 5 Name 1 & 2	1676	0680	Shared Area 2	Snsr 12 Name 7 & 8
1560	0618	Shared Area 2	Shish 5 Name 3 & 4	1678	0600	Shared Area 2	Shisr 12 Name 9 & 10
1562	061A	Shared Area 2	Snsr 5 Name 5 & 6	1692	0690	Shared Area 2	Shisi 12 Name 12814
1564	061C	Shared Area 2	Snsr 5 Name 7 & 8	1684	0092	Shared Area 2	Sher 12 Name 15&14
1566	061E	Shared Area 2	Snsr 5 Name 9 & 10	1686	0696	Shared Area 2	Snsr 13 Name 1 & 2
1568	0620	Shared Area 2	Snsr 5 Name 11 & 12	1688	0698	Shared Area 2	Snsr 13 Name 3 & 4
1570	0622	Shared Area 2	Snsr 5 Name 13 & 14	1690	069A	Shared Area 2	Snsr 13 Name 5 & 6
1572	0624	Shared Area 2	Snsr 5 Name 15 & 16	1692	069C	Shared Area 2	Snsr 13 Name 7 & 8
1574	0626	Shared Area 2	Snsr 6 Name 1 & 2	1694	069E	Shared Area 2	Snsr 13 Name 9 & 10
1576	0628	Shared Area 2	Snsr 6 Name 3 & 4	1696	06A0	Shared Area 2	Snsr 13 Name 11&12
1578	062A	Shared Area 2	Snsr 6 Name 5 & 6	1698	06A2	Shared Area 2	Snsr 13 Name 13&14
1580	062C	Shared Area 2	Snsr 6 Name 7 & 8	1700	06A4	Shared Area 2	Snsr 13 Name 15&16
1582	062E	Shared Area 2	Snsr 6 Name 9 & 10	1702	06A6	Shared Area 2	Curr.Tool Name 182
1584	0630	Shared Area 2	Snsr 6 Name 11 & 12	1704	06A8	Shared Area 2	Curr. Tool Name 384
1586	0632	Shared Area 2	Shish 6 Name 13 & 14	1706	06AA	Shared Area 2	Curr. Tool Name 586
1500	0636	Shared Area 2	Shish o Name 15 & 10 Sher 7 Name 1 & 2	1708	06AC	Shared Area 2	Curr. Tool Name 788
1502	0638	Shared Area 2	Shor 7 Name 2 & 4				
1594	0030	Shared Area 2	Snsr 7 Name 5 & 6				
1596	0630	Shared Area 2	Snsr 7 Name 7 & 9				
1598	063F	Shared Area 2	Snsr 7 Name 9 & 10				
1600	0640	Shared Area 2	Snsr 7 Name 11 & 12				
1602	0642	Shared Area 2	Snsr 7 Name 13 & 14				
1604	0644	Shared Area 2	Snsr 7 Name 15 & 16				
1606	0646	Shared Area 2	Snsr 8 Name 1 & 2				
1608	0648	Shared Area 2	Snsr 8 Name 3 & 4				

1610

1612

064A

064C

Shared Area 2

Shared Area 2

Snsr 8 Name 5 & 6

Snsr 8 Name 7 & 8

7. Processor Programming —

Programming the module from the processor involves sending the module a set of commands. Each command tells the module to perform a single action. As an example, a single action may be storing a new value for a parameter.

The module is fully programmable from the processor when the PE (Program Enable) is enabled. Passwords may be required in addition to, or instead of, Program Enable. The processor programs the module by sending commands through the output Registers assigned to the modules' slot. The module replies to the program command by sending status information back to the processor through the input Registers. These commands along with the published Memory Map give a PLC programmer complete access to the module.

8. Troubleshooting Table _____

Symptoms	Possible Causes
Unable to program unit parameters	 Is the Program Enable Input (PE) false? (i.e., the voltage level at the customer VS+/VS- input is incorrect.) Is the machine moving? Programming of several parameters (Program Number) is disabled if the resolver is turning faster than 3 RPM. Have the required passwords been entered?
Program memory is changing by itself.	 Has the tool number been changed to a different number? Have proper grounding and shielding practices been applied? Is the Program Enable input TRUE? While this will not cause the program to change itself Ñ keeping it FALSE when not actually programming the unit ensures that the memory cannot be programmed.
Outputs are shifting or turning ON/Off sooner then they should.	 Programming speed compensation can cause the output to shift and turn the output On/Off sooner then its programmed value. Remove or insert 0 in the speed compensation of this output to eliminate this effect.
Position and RPM readings are incorrect.	 Is the resolver correctly wired? Follow the steps below for a quick check. a. turn power off to M7251 DPPLS unit. b. with terminal block (containing terminal 12-22) removed from unit, measure with ohm meter the following: term. 6 to term. 5 (R1 to R2) = 15 to 50 ohms term. 1 to term. 3 (S1 to S3) = 50 to 150 ohms term. 4 to term. 2 (S4 to S2) = 50 to 150 ohms
Broken wire bit in I/O status word.	 Is the resolver cable properly grounded and shielded? Supply (VS+, VS-) less than 20 VDC? Is resolver wiring correct? Follow instructions for ohming out resolver wiring above.
Mechanical Zero drifts.	 Is the mechanical resolver linkage loose? Has the offset value been changed?
If all fails Ñ	Call AVG Technical Support @ 1 (800) TEC-ENGR

9. How to Order _____

Function Modules

I/O Modules

ASY-M7250-NN10	N-Channel Sinking transistor outputs
ASY-M7250-NP10	P-Channel Sourcing transistor outputs
ASY-M7250-NN11	PowerPanel MF2 N-Channel I/O module
ASY-M7250-NN19	PowerPanel MF2 N-Channel I/O module
ASY-M7250-N120	PowerPanel N-Channel, CBus I/O module

Reference tables 4 and 5 on page 6 (section 3.3) of this manual to determine the I/O module type for your application.

Compatible Transducer/Resolvers

The M7251 DPPLS requires a single turn resolver as an input device, such as Autotech's RL100, RL101, RL500, RL501, E1R, E7R, E8R or E9R series of resolvers. Please see appropriate Position Transducer Manual (e.g., MAN-RPXDU-000, MAN-E1/9R-010, MAN-RL501-500) for complete ordering information on resolvers, cables, and appropriate accessories.

Cable (See appropriate Position Transducer Manual for ordering cable)

WARRANTY

Autotech Controls warrant their products to be free from defects in materials or workmanship for a period of one year from the date of shipment, provided the products have been installed and used under proper conditions. The defective products must be returned to the factory freight prepaid and must be accompanied by a Return Material Authorization (RMA) number. The Company's liability under this limited warranty shall extend only to the repair or replacement of a defective product, at The Company's option. The Company disclaims all liability for any affirmation, promise or representation with respect to the products.

The customer agrees to hold Autotech Controls harmless from, defend, and indemnify Autotech Controls against damages, claims, and expenses arising out of subsequent sales of Autotech Controls' products or products containing components manufactured by Autotech Controls and based upon personal injuries, deaths, property damage, lost profits, and other matters which Buyer, its employees, or subcontractors are or may be to any extent liable, including without limitation penalties imposed by the Consumer Product Safety Act (P.L. 92-573) and liability imposed upon any person pursuant to the Magnuson-Moss Warranty Act (P.L. 93-637), as now in effect or as amended hereafter.No warranties expressed or implied are created with respect to The Company's products except those expressly contained herein. The customer acknowledges the disclaimers and limitations contained and relies on no other warranties or affirmations.

CAUTION

Autotech Controls' products are carefully engineered and rigorously tested to provide many years of reliable operation. However, any solid-state device may fail or malfunction sometime. The user must ensure that his system design has built-in redundancies if Autotech Controls' product is being used in applications where a failure or malfunction of the unit may directly threaten life or cause human injury. The system should be so designed that a single failure or malfunction does not create an unsafe condition. Regularly scheduled inspections, at least once a week, should be made to verify that the redundant circuits are fully functional. All faults should be immediately corrected by repair or replacement of the faulty unit. In addition, the user may have to comply with OSHA, ANSI, state or local standards of safety. The user of Autotech Controls' products assumes all risks of such use and indemnifies Autotech Controls against any damages.

The information in this book has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Autotech Controls reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Autotech Controls does not assume any liability arising out of application or use of any product described herein.

Autotech Controls does not recommend the use of its products in applications wherein a failure or malfunction of the unit may directly threaten life or cause human injury. The user of Autotech Controls' products assumes all risks of such use and indemnifies Autotech Controls against all damages.

© Copyright 1997-1999 by Autotech Controls, Limited Partnership. All rights reserved.